In this post I’m going to give a clean definition of idealized quantum Brownian motion and give a few entry points into the literature surrounding its abstract formulation. A follow-up post will give an interpretation to the components in the corresponding dynamical equation, and some discussion of how the model can be generalized to take into account the ways the idealization may break down in the real world.
I needed to learn this background for a paper I am working on, and I was motivated to compile it here because the idiosyncratic results returned by Google searches, and especially this MathOverflow question (which I’ve answered), made it clear that a bird’s eye view is not easy to find. All of the material below is available in the work of other authors, but not logically developed in the way I would prefer.
Preliminaries
Quantum Brownian motion (QBM) is a prototypical and idealized case of a quantum system , consisting of a continuous degree of freedom, that is interacting with a large multi-partite environment
, in general leading to varying degrees of dissipation, dispersion, and decoherence of the system. Intuitively, the distinguishing characteristics of QBM is Markovian dynamics induced by the cumulative effect of an environment with many independent, individually weak, and (crucially) “phase-space local” components. We will defined QBM as a particular class of ways that a density matrix may evolve, which may be realized (or approximately realized) by many possible system-environment models. There is a more-or-less precise sense in which QBM is the simplest quantum model capable of reproducing classical Brownian motion in a
limit.
In words to be explained: QBM is a class of possible dynamics for an open, quantum, continuous degree of freedom in which the evolution is specified by a quadratic Hamiltonian and linear Lindblad operators.… [continue reading]