Curtright et al. have a monograph on the phase-space formulation of quantum mechanics. I recommend reading their historical introduction.
Wigner’s quasi-probability distribution function in phase-space is a special (Weyl–Wigner) representation of the density matrix. It has been useful in describing transport in quantum optics, nuclear physics, quantum computing, decoherence, and chaos. It is also of importance in signal processing, and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: It furnishes a third, alternative, formulation of quantum mechanics, independent of the conventional Hilbert space or path integral formulations. In this logically complete and self-standing formulation, one need not choose sides between coordinate or momentum space. It works in full phase-space, accommodating the uncertainty principle; and it offers unique insights into the classical limit of quantum theory: The variables (observables) in this formulation are c-number functions in phase space instead of operators, with the same interpretation as their classical counterparts, but are composed together in novel algebraic ways.
Here are some quotes. First, the phase-space formulation should be placed on equal footing with the Hilbert-space and path-integral formulations:
When Feynman first unlocked the secrets of the path integral formalism and presented them to the world, he was publicly rebuked: “It was obvious”, Bohr said, “that such trajectories violated the uncertainty principle”.
However, in this case, Bohr was wrong. Today path integrals are universally recognized and widely used as an alternative framework to describe quantum behavior, equivalent to although conceptually distinct from the usual Hilbert space framework, and therefore completely in accord with Heisenberg’s uncertainty principle…
Similarly, many physicists hold the conviction that classical-valued position and momentum variables should not be simultaneously employed in any meaningful formula expressing quantum behavior, simply because this would also seem to violate the uncertainty principle…However, they too are wrong.
…
[continue reading]