As has been discussed here before, the Reeh–Schlieder theorem is an initially confusing property of the vacuum in quantum field theory. It is difficult to find an illuminating discussion of it in the literature, whether in the context of algebraic QFT (from which it originated) or the more modern QFT grounded in RG and effective theories. I expect this to change once more field theorists get trained in quantum information.

The Reeh–Schlieder theorem states that the vacuum is *cyclic* with respect to the algebra of observables localized in some subset of Minkowski space. (For a single field , the algebra is defined to be generated by all finite smearings for with support in .) Here, “cyclic” means that the subspace is dense in , i.e., any state can be arbitrarily well approximated by a state of the form with . This is initially surprising because could be a state with particle excitations localized (essentially) to a region far from and that looks (essentially) like the vacuum everywhere else. The resolution derives from the fact the vacuum is highly entangled, such that the every region is entangled with every other region by an exponentially small amount.

One mistake that’s easy to make is to be fooled into thinking that this property can only be found in systems, like a field theory, with an infinite number of degrees of freedom. So let me exhibit^{a } a quantum state with the Reeh–Schlieder property that lives in the tensor product of a *finite* number of *separable* Hilbert spaces:

As emphasized above, a separable Hilbert space is one that has a countable orthonormal basis, and is therefore isomorphic to , the space of square-normalizable functions.… [continue reading]