Reeh–Schlieder property in a separable Hilbert space

As has been discussed here before, the Reeh–Schlieder theorem is an initially confusing property of the vacuum in quantum field theory. It is difficult to find an illuminating discussion of it in the literature, whether in the context of algebraic QFT (from which it originated) or the more modern QFT grounded in RG and effective theories. I expect this to change once more field theorists get trained in quantum information.

The Reeh–Schlieder theorem states that the vacuum \vert 0 \rangle is cyclic with respect to the algebra \mathcal{A}(\mathcal{O}) of observables localized in some subset \mathcal{O} of Minkowski space. (For a single field \phi(x), the algebra \mathcal{A}(\mathcal{O}) is defined to be generated by all finite smearings \phi_f = \int\! dx\, f(x)\phi(x) for f(x) with support in \mathcal{O}.) Here, “cyclic” means that the subspace \mathcal{H}^{\mathcal{O}} \equiv \mathcal{A}(\mathcal{O})\vert 0 \rangle is dense in \mathcal{H}, i.e., any state \vert \chi \rangle \in \mathcal{H} can be arbitrarily well approximated by a state of the form A \vert 0 \rangle with A \in \mathcal{A}(\mathcal{O}). This is initially surprising because \vert \chi \rangle could be a state with particle excitations localized (essentially) to a region far from \mathcal{O} and that looks (essentially) like the vacuum everywhere else. The resolution derives from the fact the vacuum is highly entangled, such that the every region is entangled with every other region by an exponentially small amount.

One mistake that’s easy to make is to be fooled into thinking that this property can only be found in systems, like a field theory, with an infinite number of degrees of freedom. So let me exhibitMost likely a state with this property already exists in the quantum info literature, but I’ve got a habit of re-inventing the wheel. For my last paper, I spent the better part of a month rediscovering the Shor code…a   a quantum state with the Reeh–Schlieder property that lives in the tensor product of a finite number of separable Hilbert spaces:

    \[\mathcal{H} = \bigotimes_{n=1}^N \mathcal{H}_n, \qquad \mathcal{H}_n = \mathrm{span}\left\{ \vert s \rangle_n \right\}_{s=1}^\infty\]

As emphasized above, a separable Hilbert space is one that has a countable orthonormal basis, and is therefore isomorphic to L^2(\mathbb{R}), the space of square-normalizable functions.… [continue reading]

Legendre transform

The way that most physicists teach and talk about partial differential equations is horrible, and has surprisingly big costs for the typical understanding of the foundations of the field even among professionals. The chief victims are students of thermodynamics and analytical mechanics, and I’ve mentioned before that the preface of Sussman and Wisdom’s Structure and Interpretation of Classical Mechanics is a good starting point for thinking about these issues. As a pointed example, in this blog post I’ll look at how badly the Legendre transform is taught in standard textbooks,I was pleased to note as this essay went to press that my choice of Landau, Goldstein, and Arnold were confirmed as the “standard” suggestions by the top Google results.a   and compare it to how it could be taught. In a subsequent post, I’ll used this as a springboard for complaining about the way we record and transmit physics knowledge.

Before we begin: turn away from the screen and see if you can remember what the Legendre transform accomplishes mathematically in classical mechanics.If not, can you remember the definition? I couldn’t, a month ago.b   I don’t just mean that the Legendre transform converts the Lagrangian into the Hamiltonian and vice versa, but rather: what key mathematical/geometric property does the Legendre transform have, compared to the cornucopia of other function transforms, that allows it to connect these two conceptually distinct formulations of mechanics?

(Analogously, the question “What is useful about the Fourier transform for understanding translationally invariant systems?” can be answered by something like “Translationally invariant operations in the spatial domain correspond to multiplication in the Fourier domain” or “The Fourier transform is a change of basis, within the vector space of functions, using translationally invariant basis elements, i.e.,… [continue reading]

Toward relativistic branches of the wavefunction

I prepared the following extended abstract for the Spacetime and Information Workshop as part of my continuing mission to corrupt physicists while they are still young and impressionable. I reproduce it here for your reading pleasure.


Finding a precise definition of branches in the wavefunction of closed many-body systems is crucial to conceptual clarity in the foundations of quantum mechanics. Toward this goal, we propose amplification, which can be quantified, as the key feature characterizing anthropocentric measurement; this immediately and naturally extends to non-anthropocentric amplification, such as the ubiquitous case of classically chaotic degrees of freedom decohering. Amplification can be formalized as the production of redundant records distributed over spatial disjoint regions, a certain form of multi-partite entanglement in the pure quantum state of a large closed system. If this definition can be made rigorous and shown to be unique, it is then possible to ask many compelling questions about how branches form and evolve.

A recent result shows that branch decompositions are highly constrained just by this requirement that they exhibit redundant local records. The set of all redundantly recorded observables induces a preferred decomposition into simultaneous eigenstates unless their records are highly extended and delicately overlapping, as exemplified by the Shor error-correcting code. A maximum length scale for records is enough to guarantee uniqueness. However, this result is grounded in a preferred tensor decomposition into independent microscopic subsystems associated with spatial locality. This structure breaks down in a relativistic setting on scales smaller than the Compton wavelength of the relevant field. Indeed, a key insight from algebraic quantum field theory is that finite-energy states are never exact eigenstates of local operators, and hence never have exact records that are spatially disjoint, although they can approximate this arbitrarily well on large scales.… [continue reading]

Branches and matrix-product states

I’m happy to use this bully pulpit to advertise that the following paper has been deemed “probably not terrible”, i.e., published.

When the wave function of a large quantum system unitarily evolves away from a low-entropy initial state, there is strong circumstantial evidence it develops “branches”: a decomposition into orthogonal components that is indistinguishable from the corresponding incoherent mixture with feasible observations. Is this decomposition unique? Must the number of branches increase with time? These questions are hard to answer because there is no formal definition of branches, and most intuition is based on toy models with arbitrarily preferred degrees of freedom. Here, assuming only the tensor structure associated with spatial locality, I show that branch decompositions are highly constrained just by the requirement that they exhibit redundant local records. The set of all redundantly recorded observables induces a preferred decomposition into simultaneous eigenstates unless their records are highly extended and delicately overlapping, as exemplified by the Shor error-correcting code. A maximum length scale for records is enough to guarantee uniqueness. Speculatively, objective branch decompositions may speed up numerical simulations of nonstationary many-body states, illuminate the thermalization of closed systems, and demote measurement from fundamental primitive in the quantum formalism.

Here’s the figureThe editor tried to convince me that this figure appeared on the cover for purely aesthetic reasons and this does not mean my letter is the best thing in the issue…but I know better!a   and caption:


Spatially disjoint regions with the same coloring (e.g., the solid blue regions \mathcal{F}, \mathcal{F}', \ldots) denote different records for the same observable (e.g., \Omega_a = \{\Omega_a^{\mathcal{F}},\Omega_a^{\mathcal{F}'},\ldots\}).
[continue reading]

Comments on Cotler, Penington, & Ranard

One way to think about the relevance of decoherence theory to measurement in quantum mechanics is that it reduces the preferred basis problem to the preferred subsystem problem; merely specifying the system of interest (by delineating it from its environment or measuring apparatus) is enough, in important special cases, to derive the measurement basis. But this immediately prompts the question: what are the preferred systems? I spent some time in grad school with my advisor trying to see if I could identify a preferred system just by looking at a large many-body Hamiltonian, but never got anything worth writing up.

I’m pleased to report that Cotler, Penington, and Ranard have tackled a closely related problem, and made a lot more progress:

Locality from the Spectrum
Jordan S. Cotler, Geoffrey R. Penington, Daniel H. Ranard
Essential to the description of a quantum system are its local degrees of freedom, which enable the interpretation of subsystems and dynamics in the Hilbert space. While a choice of local tensor factorization of the Hilbert space is often implicit in the writing of a Hamiltonian or Lagrangian, the identification of local tensor factors is not intrinsic to the Hilbert space itself. Instead, the only basis-invariant data of a Hamiltonian is its spectrum, which does not manifestly determine the local structure. This ambiguity is highlighted by the existence of dualities, in which the same energy spectrum may describe two systems with very different local degrees of freedom. We argue that in fact, the energy spectrum alone almost always encodes a unique description of local degrees of freedom when such a description exists, allowing one to explicitly identify local subsystems and how they interact.
[continue reading]

Singular value decomposition in bra-ket notation

In linear algebra, and therefore quantum information, the singular value decomposition (SVD) is elementary, ubiquitous, and beautiful. However, I only recently realized that its expression in bra-ket notation is very elegant. The SVD is equivalent to the statement that any operator \hat{M} can be expressed as

(1)   \begin{align*} \hat{M} = \sum_i \vert A_i \rangle \lambda_i \langle B_i \vert \end{align*}

where \vert A_i \rangle and \vert B_i \rangle are orthonormal sets of vectors, possibly in Hilbert spaces with different dimensionality, and the \lambda_i \ge 0 are the singular values.

That’s it.… [continue reading]

Comments on Bousso’s communication bound

Bousso has a recent paper bounding the maximum information that can be sent by a signal from first principles in QFT:

I derive a universal upper bound on the capacity of any communication channel between two distant systems. The Holevo quantity, and hence the mutual information, is at most of order E\Delta t/\hbar, where E the average energy of the signal, and \Delta t is the amount of time for which detectors operate. The bound does not depend on the size or mass of the emitting and receiving systems, nor on the nature of the signal. No restrictions on preparing and processing the signal are imposed. As an example, I consider the encoding of information in the transverse or angular position of a signal emitted and received by systems of arbitrarily large cross-section. In the limit of a large message space, quantum effects become important even if individual signals are classical, and the bound is upheld.

Here’s his first figure:



This all stems from vacuum entanglement, an oft-neglected aspect of QFT that Bousso doesn’t emphasize in the paper as the key ingredient.I thank Scott Aaronson for first pointing this out.a   The gradient term in the Hamiltonian for QFTs means that the value of the field at two nearby locations is always entangled. In particular, the value of \phi(x) and \phi(x+\Delta x) are sometimes considered independent degrees of freedom but, for a state with bounded energy, they can’t actually take arbitrarily different values as \Delta x becomes small, or else the gradient contribution to the Hamiltonian violates the energy bound. Technically this entanglement exists over arbitrary distances, but it is exponentially suppressed on scales larger than the Compton wavelength of the field.… [continue reading]

How to think about Quantum Mechanics—Part 1: Measurements are about bases

[This post was originally “Part 0”, but it’s been moved. Other parts in this series: 1,2,3,4,5,6,7,8.]

In an ideal world, the formalism that you use to describe a physical system is in a one-to-one correspondence with the physically distinct configurations of the system. But sometimes it can be useful to introduce additional descriptions, in which case it is very important to understand the unphysical over-counting (e.g., gauge freedom). A scalar potential V(x) is a very convenient way of representing the vector force field, F(x) = \partial V(x), but any constant shift in the potential, V(x) \to V(x) + V_0, yields forces and dynamics that are indistinguishable, and hence the value of the potential on an absolute scale is unphysical.

One often hears that a quantum experiment measures an observable, but this is wrong, or very misleading, because it vastly over-counts the physically distinct sorts of measurements that are possible. It is much more precise to say that a given apparatus, with a given setting, simultaneously measures all observables with the same eigenvectors. More compactly, an apparatus measures an orthogonal basis – not an observable.We can also allow for the measured observable to be degenerate, in which case the apparatus simultaneously measures all observables with the same degenerate eigenspaces. To be abstract, you could say it measures a commuting subalgebra, with the nondegenerate case corresponding to the subalgebra having maximum dimensionality (i.e., the same number of dimensions as the Hilbert space). Commuting subalgebras with maximum dimension are in one-to-one correspondence with orthonormal bases, modulo multiplying the vectors by pure phases.a   You can probably start to see this by just noting that there’s no actual, physical difference between measuring X and X^3; the apparatus that would perform the two measurements are identical.… [continue reading]