When talking to folks about the quantum measurement problem, and its potential partial resolution by solving the set selection problem, I’ve recently been deploying three nonstandard arguments. To a large extent, these are dialectic strategies rather than unique arguments per se. That is, they are notable for me mostly because they avoid getting bogged down in some common conceptual dispute, not necessarily because they demonstrate something that doesn’t formally follow from traditional arguments. At least two of these seem new to me, in the sense that I don’t remember anyone else using them, but I strongly suspect that I’ve just appropriated them from elsewhere and forgotten. Citations to prior art are highly appreciated.
Passive quantum mechanics
There are good reasons to believe that, at the most abstract level, the practice of science doesn’t require a notion of active experiment. Rather, a completely passive observer could still in principle derive all fundamental physical theories simply by sitting around and watching. Science, at this level, is about explaining as many observations as possible starting from as minimal assumptions as possible. Abstractly we frame science as a compression algorithm that tries to find the programs with the smallest Kolmogorov complexity that reproduces observed data.
Active experiments are of course useful for at least two important reasons: (1) They gather strong evidence for causality by feeding a source of randomness into a system to test a causal model, and (2) they produce sources of data that are directly correlated with systems of interest rather than relying on highly indirect (and perhaps computationally intractable) correlations. But ultimately these are practical considerations, and an inert but extraordinarily intelligent observer could in principle derive general relativity, quantum mechanics, and field theory … [continue reading]