Three arguments on the measurement problem

When talking to folks about the quantum measurement problem, and its potential partial resolution by solving the set selection problem, I’ve recently been deploying three nonstandard arguments. To a large extent, these are dialectic strategies rather than unique arguments per se. That is, they are notable for me mostly because they avoid getting bogged down in some common conceptual dispute, not necessarily because they demonstrate something that doesn’t formally follow from traditional arguments. At least two of these seem new to me, in the sense that I don’t remember anyone else using them, but I strongly suspect that I’ve just appropriated them from elsewhere and forgotten. Citations to prior art are highly appreciated.

Passive quantum mechanics

There are good reasons to believe that, at the most abstract level, the practice of science doesn’t require a notion of active experiment. Rather, a completely passive observer could still in principle derive all fundamental physical theories simply by sitting around and watching. Science, at this level, is about explaining as many observations as possible starting from as minimal assumptions as possible. Abstractly we frame science as a compression algorithm that tries to find the programs with the smallest Kolmogorov complexity that reproduces observed data.

Active experiments are of course useful for at least two important reasons: (1) They gather strong evidence for causality by feeding a source of randomness into a system to test a causal model, and (2) they produce sources of data that are directly correlated with systems of interest rather than relying on highly indirect (and perhaps computationally intractable) correlations. But ultimately these are practical considerations, and an inert but extraordinarily intelligent observer could in principle derive general relativity, quantum mechanics, and field theoryOf course, there may be RG-reasons to think that scales decouple, and that to a good approximation the large-scale dynamics are compatible with lots of possible small-scale dynamics.[continue reading]

Comments on an essay by Wigner

[PSA: Happy 4th of July. Juno arrives at Jupiter tonight!]

This is short and worth reading:

The sharp distinction between Initial Conditions and Laws of Nature was initiated by Isaac Newton and I consider this to be one of his most important, if not the most important, accomplishment. Before Newton there was no sharp separation between the two concepts. Kepler, to whom we owe the three precise laws of planetary motion, tried to explain also the size of the planetary orbits, and their periods. After Newton's time the sharp separation of initial conditions and laws of nature was taken for granted and rarely even mentioned. Of course, the first ones are quite arbitrary and their properties are hardly parts of physics while the recognition of the latter ones are the prime purpose of our science. Whether the sharp separation of the two will stay with us permanently is, of course, as uncertain as is all future development but this question will be further discussed later. Perhaps it should be mentioned here that the permanency of the validity of our deterministic laws of nature became questionable as a result of the realization, due initially to D. Zeh, that the states of macroscopic bodies are always under the influence of their environment; in our world they can not be kept separated from it.

This essay has no formal abstract; the above is the second paragraph, which I find to be profound. Here is the PDF. The essay shares the same name and much of the material with Wigner’s 1963 Nobel lecture [PDF].The Nobel lecture has a nice bit contrasting invariance principles with covariance principles, and dynamical invariance principles with geometrical invariance principles.[continue reading]

Comments on Rosaler’s “Reduction as an A Posteriori Relation”

In a previous post of abstracts, I mentioned philosopher Josh Rosaler’s attempt to clarify the distinction between empirical and formal notions of “theoretical reduction”. Reduction is just the idea that one theory reduces to another in some limit, like Galilean kinematics reduces to special relativity in the limit of small velocities.Confusingly, philosophers use a reversed convention; they say that Galilean mechanics reduces to special relativity.a   Formal reduction is when this takes the form of some mathematical limiting procedure (e.g., v/c \to 0), whereas empirical reduction is an explanatory statement about observations (e.g., “special relativity can explains the empirical usefulness of Galilean kinematics”).

Rosaler’s criticism, which I mostly agree with, is that folks often conflate these two. Usually this isn’t a serious problem since the holes can be patched up on the fly by a competent physicist, but sometimes it leads to serious trouble. The most egregious case, and the one that got me interested in all this, is the quantum-classical transition, and in particular the serious insufficiency of existing \hbar \to 0 limits to explain the appearance of macroscopic classicality. In particular, even though this limiting procedure recovers the classical equations of motion, it fails spectacularly to recover the state space.There are multiple quantum states that have the same classical analog as \hbar \to 0, and there are quantum states that have no classical analog as \hbar \to 0.b  

In this post I’m going to comment Rosaler’s recent elaboration on this ideaI thank him for discussion this topic and, full disclosure, we’re drafting a paper about set selection together.c  :

Reduction between theories in physics is often approached as an a priori relation in the sense that reduction is often taken to depend only on a comparison of the mathematical structures of two theories.
[continue reading]

Comments on Myrvold’s Taj Mahal

Last week I saw an excellent talk by philosopher Wayne Myrvold.

The Reeh-Schlieder theorem says, roughly, that, in any reasonable quantum field theory, for any bounded region of spacetime R, any state can be approximated arbitrarily closely by operating on the vacuum state (or any state of bounded energy) with operators formed by smearing polynomials in the field operators with functions having support in R. This strikes many as counterintuitive, and Reinhard Werner has glossed the theorem as saying that “By acting on the vacuum with suitable operations in a terrestrial laboratory, an experimenter can create the Taj Mahal on (or even behind) the Moon!” This talk has two parts. First, I hope to convince listeners that the theorem is not counterintuitive, and that it follows immediately from facts that are already familiar fare to anyone who has digested the opening chapters of any standard introductory textbook of QFT. In the second, I will discuss what we can learn from the theorem about how relativistic causality is implemented in quantum field theories.

(Download MP4 video here.)

The topic was well-defined, and of reasonable scope. The theorem is easily and commonly misunderstood. And Wayne’s talk served to dissolve the confusion around it, by unpacking the theorem into a handful of pieces so that you could quickly see where the rub was. I would that all philosophy of physics were so well done.

Here are the key points as I saw them:

  • The vacuum state in QFTs, even non-interacting ones, is entangled over arbitrary distances (albeit by exponentially small amounts). You can think of this as every two space-like separated regions of spacetime sharing extremely diluted Bell pairs.
[continue reading]

How to think about Quantum Mechanics—Part 6: Energy conservation and wavefunction branches

[Other parts in this series: 1,2,3,4,5,6,7,8.]

In discussions of the many-worlds interpretation (MWI) and the process of wavefunction branching, folks sometimes ask whether the branching process conflicts with conservations laws like the conservation of energy.Here are some related questions from around the web, not addressing branching or MWI. None of them get answered particularly well.a   There are actually two completely different objections that people sometimes make, which have to be addressed separately.

First possible objection: “If the universe splits into two branches, doesn’t the total amount of energy have to double?” This is the question Frank Wilczek appears to be addressing at the end of these notes.

I think this question can only be asked by someone who believes that many worlds is an interpretation that is just like Copenhagen (including, in particular, the idea that measurement events are different than normal unitary evolution) except that it simply declares that new worlds are created following measurements. But this is a misunderstanding of many worlds. MWI dispenses with collapse or any sort of departure from unitary evolution. The wavefunction just evolves along, maintaining its energy distributions, and energy doesn’t double when you mathematically identify a decomposition of the wavefunction into two orthogonal components.

Second possible objection: “If the universe starts out with some finite spread in energy, what happens if it then ‘branches’ into multiple worlds, some of which overlap with energy eigenstates outside that energy spread?” Or, another phrasing: “What happens if the basis in which the universe decoheres doesn’t commute with energy basis? Is it then possible to create energy, at least in some branches?”… [continue reading]

How to think about Quantum Mechanics—Part 4: Quantum indeterminism as an anomaly

[Other parts in this series: 1,2,3,4,5,6,7,8.]

I am firmly of the view…that all the sciences are compatible and that detailed links can be, and are being, forged between them. But of course the links are subtle… a mathematical aspect of theory reduction that I regard as central, but which cannot be captured by the purely verbal arguments commonly employed in philosophical discussions of reduction. My contention here will be that many difficulties associated with reduction arise because they involve singular limits….What nonclassical phenomena emerge as h 0? This sounds like nonsense, and indeed if the limit were not singular the answer would be: no such phenomena.Michael Berry

One of the great crimes against humanity occurs each year in introductory quantum mechanics courses when students are introduced to an \hbar \to 0 limit, sometimes decorated with words involving “the correspondence principle”. The problem isn’t with the content per se, but with the suggestion that this somehow gives a satisfying answer to why quantum mechanics looks like classical mechanics on large scales.

Sometimes this limit takes the form of a path integral, where the transition probability for a particle to move from position x_1 to x_2 in a time T is

(1)   \begin{align*} P_{x_1 \to x_2} &= \langle x_1 \vert e^{-i H T} \vert x_2 \rangle \\ &\propto \int_{x_1,x_2} \mathcal{D}[x(t)] e^{-i S[x(t),x'(t)]/\hbar} = \int_{x_1,x_2} \mathcal{D}[x(t)] e^{-i \int_0^T \mathrm{d}t L(x(t),x'(t))/\hbar} \end{align*}

where \int_{x_1,x_2} \mathcal{D}[x(t)] is the integral over all paths from x_1 to x_2, and S[x(t),x'(t)]= \int_0^T \mathrm{d}t L(x(t),x'(t)) is the action for that path (L being the Lagrangian corresponding to the Hamiltonian H). As \hbar \to 0, the exponent containing the action spins wildly and averages to zero for all paths not in the immediate vicinity of the classical path that make the action stationary.

Other times this takes the form of Ehrenfest’s theorem, which shows that the expectation values of functions of position and momentum follow the classical equations of motion.… [continue reading]

Potentials and the Aharonov–Bohm effect

[This post was originally “Part 1” of my HTTAQM series. However, it’s old, haphazardly written, and not a good starting point. Therefore, I’ve removed it from that series, which now begins with “Measurements are about bases”. Other parts are here: 1,2,3,4,5,6,7,8. I hope to re-write this post in the future.]

It’s often remarked that the Aharonov–Bohm (AB) effect says something profound about the “reality” of potentials in quantum mechanics. In one version of the relevant experiment, charged particles are made to travel coherently along two alternate paths, such as in a Mach-Zehnder interferometer. At the experimenter’s discretion, an external electromagnetic potential (either vector or scalar) can be applied so that the two paths are at different potentials yet still experience zero magnetic and electric field. The paths are recombined, and the size of the potential difference determines the phase of the interference pattern. The effect is often interpreted as a demonstration that the electromagnetic potential is physically “real”, rather than just a useful mathematical concept.


The magnetic Aharanov-Bohm effect. The wavepacket of an electron approaches from the left and is split coherently over two paths, L and R. The red solenoid in between contains magnetic flux \Phi. The region outside the solenoid has zero field, but there is a non-zero curl to the vector potential as measured along the two paths. The relative phase between the L and R wavepackets is given by \Theta = e \Phi/c \hbar.

However, Vaidman recently pointed out that this is a mistaken interpretation which is an artifact of the semi-classical approximation used to describe the AB effect.… [continue reading]

Comments on Tegmark’s ‘Consciousness as a State of Matter’

[Edit: Scott Aaronson has posted on his blog with extensive criticism of Integrated Information Theory, which motivated Tegmark’s paper.]

Max Tegmark’s recent paper entitled “Consciousness as a State of Matter” has been making the rounds. See especially Sabine Hossenfelder’s critique on her blog that agrees in several places with what I say below.

Tegmark’s paper didn’t convince me that there’s anything new here with regards to the big questions of consciousness. (In fairness, I haven’t read the work of neuroscientist Giulio Tononi that motivated Tegmark’s claims). However, I was interested in what he has to say about the proper way to define subsystems in a quantum universe (i.e. to “carve reality at its joints”) and how this relates to the quantum-classical transition. There is a sense in which the modern understanding of decoherence simplifies the vague questions “How does (the appearance of) a classical world emerge in a quantum universe? ” to the slightly-less-vague question “what are the preferred subsystems of the universe, and how do they change with time?”. Tegmark describes essentially this as the “quantum factorization problem” on page 3. (My preferred formulation is as the “set-selection problem” by Dowker and Kent. Note that this is a separate problem from the origin of probability in quantum mechanicsThe problem of probability as described by Weinberg: “The difficulty is not that quantum mechanics is probabilistic—that is something we apparently just have to live with. The real difficulty is that it is also deterministic, or more precisely, that it combines a probabilistic interpretation with deterministic dynamics.” HT Steve Hsu.a  .)

Therefore, my comments are going to focus on the “object-level” calculations of the paper, and I won’t have much to say about the implications for consciousness except at the very end.… [continue reading]