GPT-3, PaLM, and look-up tables

[This topic is way outside my expertise. Just thinking out loud.]

Here is Google’s new language model PaLM having a think:

Alex Tabarrok writes

It seems obvious that the computer is reasoning. It certainly isn’t simply remembering. It is reasoning and at a pretty high level! To say that the computer doesn’t “understand” seems little better than a statement of religious faith or speciesism…

It’s true that AI is just a set of electronic neurons none of which “understand” but my neurons don’t understand anything either. It’s the system that understands. The Chinese room understands in any objective evaluation and the fact that it fails on some subjective impression of what it is or isn’t like to be an AI or a person is a failure of imagination not an argument…

These arguments aren’t new but Searle’s thought experiment was first posed at a time when the output from AI looked stilted, limited, mechanical. It was easy to imagine that there was a difference in kind. Now the output from AI looks fluid, general, human. It’s harder to imagine there is a difference in kind.

Tabarrok uses an illustration of Searle’s Chinese room featuring a giant look-up table:

But as Scott Aaronson has emphasized [PDF], a machine that simply maps inputs to outputs by consulting a giant look-up table should not be considered “thinking” (although it could be considered to “know”). First, such a look-up table would be beyond astronomically large for any interesting AI task and hence physically infeasible to implement in the real universe. But more importantly, the fact that something is being looked up rather than computed undermines the idea that the system understands or is reasoning.… [continue reading]

Distinguish between straight research and scientific opinion?

Summary: Maybe we should start distinguishing “straight research” from more opinionated scientific work and encourage industrial research labs to commit to protecting the former as a realistic, limited version of academic freedom in the private for-profit sector.

It seems clear enough to me that, within the field of journalism, the distinction between opinion pieces and “straight reporting” is both meaningful and valuable to draw. Both sorts of works should be pursued vigorously, even by the same journalists at the same time, but they should be distinguished (e.g., by being placed in different sections of a newspaper, or being explicitly labeled “opinion”, etc.) and held to different standards.In my opinion it’s unfortunate that this distinction has been partially eroded in recent years and that some thoughtful people have even argued it’s meaningless and should be dropped. That’s not the subject of this blog post, though.a   This is true even though there is of course a continuum between these categories, and it’s infeasible to precisely quantify the axis. (That said, I’d like to see more serious philosophical attempts to identify actionable principles for drawing this distinction more reliably and transparently.)

It’s easy for idealistic outsiders to get the impression that all of respectable scientific research is analogous to straight reporting rather than opinion, but just about any researcher will tell you that some articles are closer than other articles to the opinion category; that’s not to say it’s bad or unscientific, just that such articles go further in the direction of speculative interpretation and selective highlighting of certain pieces of evidence, and are often motivated by normative claims (“this area is more fruitful research avenue than my colleagues believe”, “this evidence implies the government should adopt a certain policy”, etc.).… [continue reading]

Comments on “Longtermist Institutional Reform” by John & MacAskill

Tyler John & William MacAskill have recently released a preprint of their paper “Longtermist Institutional Reform” [PDF]. The paper is set to appear in an EA-motivated collection “The Long View” (working title), from Natalie Cargill and Effective Giving.

Here is the abstract:

There is a vast number of people who will live in the centuries and millennia to come. In all probability, future generations will outnumber us by thousands or millions to one; of all the people who we might affect with our actions, the overwhelming majority are yet to come. In the aggregate, their interests matter enormously. So anything we can do to steer the future of civilization onto a better trajectory, making the world a better place for those generations who are still to come, is of tremendous moral importance. Political science tells us that the practices of most governments are at stark odds with longtermism. In addition to the ordinary causes of human short-termism, which are substantial, politics brings unique challenges of coordination, polarization, short-term institutional incentives, and more. Despite the relatively grim picture of political time horizons offered by political science, the problems of political short-termism are neither necessary nor inevitable. In principle, the State could serve as a powerful tool for positively shaping the long-term future. In this chapter, we make some suggestions about how we should best undertake this project. We begin by explaining the root causes of political short-termism. Then, we propose and defend four institutional reforms that we think would be promising ways to increase the time horizons of governments: 1) government research institutions and archivists; 2) posterity impact assessments; 3) futures assemblies; and 4) legislative houses for future generations.

[continue reading]

How to think about Quantum Mechanics—Part 8: The quantum-classical limit as music

[Other parts in this series: 1,2,3,4,5,6,7,8.]

On microscopic scales, sound is air pressure f(t) fluctuating in time t. Taking the Fourier transform of f(t) gives the frequency distribution \hat{f}(\omega), but in an eternal way, applying to the entire time interval for t\in [-\infty,\infty].

Yet on macroscopic scales, sound is described as having a frequency distribution as a function of time, i.e., a note has both a pitch and a duration. There are many formalisms for describing this (e.g., wavelets), but a well-known limitation is that the frequency \omega of a note is only well-defined up to an uncertainty that is inversely proportional to its duration \Delta t.

At the mathematical level, a given wavefunction \psi(x) is almost exactly analogous: macroscopically a particle seems to have a well-defined position and momentum, but microscopically there is only the wavefunction \psi. The mapping of the analogyI am of course not the first to emphasize this analogy. For instance, while writing this post I found “Uncertainty principles in Fourier analysis” by de Bruijn (via Folland’s book), who calls the Wigner function of an audio signal f(t) the “musical score” of f.a   is \{t,\omega,f\} \to \{x,p,\psi\}. Wavefunctions can of course be complex, but we can restrict ourself to a real-valued wavefunction without any trouble; we are not worrying about the dynamics of wavefunctions, so you can pretend the Hamiltonian vanishes if you like.

In order to get the acoustic analog of Planck’s constant \hbar, it helps to imagine going back to a time when the pitch of a note was measured with a unit that did not have a known connection to absolute frequency, i.e.,… [continue reading]

How shocking are rare past events?

This post describes variations on a thought experiment involving the anthropic principle. The variations were developed through discussion with Andreas Albrecht, Charles Bennett, Leonid Levin, and Andrew Arrasmith at a conference at the Neils Bohr Institute in Copenhagen in October of 2019. I have not yet finished reading Bostrom’s “Anthropic Bias“, so I don’t know where it fits in to his framework. I expect it is subsumed into such existing discussion, and I would appreciate pointers.

The point is to consider a few thought experiments that share many of the same important features, but for which we have very different intuitions, and to identify if there are any substantive difference that can be used to justify these intuitions.

I will use the term “shocked” (in the sense of “I was shocked to see Bob levitate off the ground”) to refer to the situation where we have made observations that are extremely unlikely to be generated by our implicit background model of the world, such that good reasoners would likely reject the model and start entertaining previously disfavored alternative models like “we’re all brains in a vat”, the Matrix, etc. In particular, to be shocked is not supposed to be merely a description of human psychology, but rather is a normative claim about how good scientific reasoners should behave.

Here are the three scenarios:

Scenario 1: Through advances in geology, paleontology, theoretical biology, and quantum computer simulation of chemistry, we get very strong theoretical evidence that intelligent life appears with high likelihood following abiogenesis events, but that abiogenesis itself is very rare: there is one expected abiogenesis event per 1022 stars per Hubble time.
[continue reading]

FAQ about experimental quantum Darwinism

I am briefly stirring from my blog-hibernationThis blog will resume at full force sometime in the future, but not just yet.a   to present a collection of frequently asked questions about experiments seeking to investigate quantum Darwinism (QD). Most of the questions were asked by (or evolved from questions asked by) Phillip Ball while we corresponded regarding his recent article “Quantum Darwinism, an Idea to Explain Objective Reality, Passes First Tests” for Quanta magazine, which I recommend you check out.


Who is trying see quantum Darwinism in experiments?

I am aware of two papers out of a group from Arizona State in 2010 (here and here) and three papers from separate groups last year (arXiv: 1803.01913, 1808.07388, 1809.10456). I haven’t looked at them all carefully so I can’t vouch for them, but I think the more recent papers would be the closest thing to a “test” of QD.

What are the experiments doing to put QD the test?

These teams construct a kind of “synthetic environment” from just a few qubits, and then interrogate them to discover the information that they contain about the quantum system to which they are coupled.

What do you think of experimental tests of QD in general?

Considered as a strictly mathematical phenomenon, QD is the dynamical creation of certain kinds of correlations between certain systems and their environments under certain conditions. These experiments directly confirm that, if such conditions are created, the expected correlations are obtained.

The experiments are, unfortunately, not likely to offer many insight or opportunities for surprise; the result can be predicted with very high confidence long in advance.… [continue reading]

Comments on Weingarten’s preferred branch

[Added 2022-March-13: Weingarten has a new paper, discussed by me here, that mostly supercedes the content of this post.]

A senior colleague asked me for thoughts on this paper describing a single-preferred-branch flavor of quantum mechanics, and I thought I’d copy them here. Tl;dr: I did not find an important new idea in it, but this paper nicely illustrates the appeal of Finkelstein’s partial-trace decoherence and the ambiguity inherent in connecting a many-worlds wavefunction to our direct observations.


We propose a method for finding an initial state vector which by ordinary Hamiltonian time evolution follows a single branch of many-worlds quantum mechanics. The resulting deterministic system appears to exhibit random behavior as a result of the successive emergence over time of information present in the initial state but not previously observed.

We start by assuming that a precise wavefunction branch structure has been specified. The idea, basically, is to randomly draw a branch at late times according to the Born probability, then to evolve it backwards in time to the beginning of the universe and take that as your initial condition. The main motivating observation is that, if we assume that all branch splittings are defined by a projective decomposition of some subsystem (‘the system’) which is recorded faithfully elsewhere (‘the environment’), then the lone preferred branch — time-evolving by itself — is an eigenstate of each of the projectors defining the splits. In a sense, Weingarten lays claim to ordered consistency [arxiv:gr-qc/9607073] by assuming partial-trace decoherenceNote on terminology: What Finkelstein called “partial-trace decoherence” is really a specialized form of consistency (i.e.,[continue reading]

Weinberg on the measurement problem

In his new article in the NY Review of Books, the titan Steven Weinberg expresses more sympathy for the importance of the measurement problem in quantum mechanics. The article has nothing new for folks well-versed in quantum foundations, but Weinberg demonstrates a command of the existing arguments and considerations. The lengthy excerpts below characterize what I think are the most important aspects of his view.

Many physicists came to think that the reaction of Einstein and Feynman and others to the unfamiliar aspects of quantum mechanics had been overblown. This used to be my view. After all, Newton’s theories too had been unpalatable to many of his contemporaries…Evidently it is a mistake to demand too strictly that new physical theories should fit some preconceived philosophical standard.

In quantum mechanics the state of a system is not described by giving the position and velocity of every particle and the values and rates of change of various fields, as in classical physics. Instead, the state of any system at any moment is described by a wave function, essentially a list of numbers, one number for every possible configuration of the system….What is so terrible about that? Certainly, it was a tragic mistake for Einstein and Schrödinger to step away from using quantum mechanics, isolating themselves in their later lives from the exciting progress made by others. Even so, I’m not as sure as I once was about the future of quantum mechanics. It is a bad sign that those physicists today who are most comfortable with quantum mechanics do not agree with one another about what it all means. The dispute arises chiefly regarding the nature of measurement in quantum mechanics…

The introduction of probability into the principles of physics was disturbing to past physicists, but the trouble with quantum mechanics is not that it involves probabilities.

[continue reading]