Unital dynamics are mixedness increasing

After years of not having an intuitive interpretation of the unital condition on CP maps, I recently learned a beautiful one: unitality means the dynamics never decreases the state’s mixedness, in the sense of the majorization partial order.

Consider the Lindblad dynamics generated by a set of Lindblad operators L_k, corresponding to the Lindbladian

(1)   \begin{align*} \mathcal{L}[\rho] = \sum_k\left(L_k\rho L_k^\dagger - \{L_k^\dagger L_k,\rho\}/2\right) \end{align*}

and the resulting quantum dynamical semigroup \Phi_t[\rho] = e^{t\mathcal{L}}[\rho]. Let

(2)   \begin{align*} S_\alpha[\rho] = \frac{\ln\left(\mathrm{Tr}[\rho^\alpha]\right)}{1-\alpha}, \qquad \alpha\ge 0 \end{align*}

be the Renyi entropies, with S_{\mathrm{vN}}[\rho]:=\lim_{\alpha\to 1} S_\alpha[\rho] = -\mathrm{Tr}[\rho\ln\rho] the von Neumann entropy. Finally, let \prec denote the majorization partial order on density matrices: \rho\prec\rho' exactly when \mathrm{spec}[\rho]\prec\mathrm{spec}[\rho'] exactly when \sum_{i=1}^r \lambda_i \le \sum_{i=1}^r \lambda_i^\prime for all r, where \lambda_i and \lambda_i^\prime are the respective eigenvalues in decreasing order. (In words: \rho\prec\rho' means \rho is more mixed than \rho'.) Then the following conditions are equivalent:None of this depends on the dynamics being Lindbladian. If you drop the first condition and drop the “t” subscript, so that \Phi is just some arbitrary (potentially non-divisible) CP map, the remaining conditions are all equivalent.a  

  • \mathcal{L}[I]=0
  • \Phi_t[I]=I: “\Phi_t is a unital map (for all t)”
  • \frac{\mathrm{d}}{\mathrm{d}t}S_\alpha[\Phi_t[\rho]] \ge 0 for all \rho, t, and \alpha: “All Renyi entropies are non-decreasing”
  • \Phi_t[\rho]\prec\rho for all t: “\Phi_t is mixedness non-decreasing”
  • \Phi_t[\rho] = \sum_j p_j U^{(t)}_j\rho U^{(t)\dagger}_j for all t and some unitaries U^{(t)}_j and probabilities p_j.

The non-trivial equivalences above are proved in Sec. 8.3 of Wolf, “Quantum Channels and Operations Guided Tour“.See also “On the universal constraints for relaxation rates for quantum dynamical semigroup” by Chruscinski et al [2011.10159] for further interesting discussion.b  

Note that having all Hermitian Lindblad operators (L_k = L_k^\dagger) implies, but is not implied by, the above conditions. Indeed, the condition of Lindblad operator Hermiticity (or, more generally, normality) is not preserved under the unitary gauge freedom L_k\to L_k^\prime = \sum_j u_{kj} L_j (which leaves the Lindbladian \mathcal{L} invariant for unitary u.) I was curious whether unital dynamics can always be expressed in terms of Hermitian operators, but based on some quick numerics it looks like this is not the case. I’d be interested to find a minimal and interpretable counterexample.

Footnotes

(↵ returns to text)

  1. None of this depends on the dynamics being Lindbladian. If you drop the first condition and drop the “t” subscript, so that \Phi is just some arbitrary (potentially non-divisible) CP map, the remaining conditions are all equivalent.
  2. See also “On the universal constraints for relaxation rates for quantum dynamical semigroup” by Chruscinski et al [2011.10159] for further interesting discussion.
Bookmark the permalink.

One Comment

  1. Cool! I did not know this condition either. This seems to answer an old loophole in a famous paper on BH information loss by Banks, Peskin, and Susskind: https://inspirehep.net/literature/194105. After Eq. 9 they say (wrt a general Lindblad equation) “One might also insist that the entropy defined by \rho not decrease with time. We do not know what conditions are necessary to insure these properties, but we can state some simple sufficient conditions. “

Leave a Reply

Required fields are marked with a *. Your email address will not be published.

Contact me if the spam filter gives you trouble.

Basic HTML tags like ❮em❯ work. Type [latexpage] somewhere to render LaTeX in $'s. (Details.)