Moyal bracket with manifest (affine) symplectic covariance

Moyal’s equation for a Wigner function W of a quantum system with (Wigner-transformed) Hamiltonian H is \partial_t W = \{ H,W \}_\hbar where the Moyal bracket is a binary operator on the space of functions over phase space. Unfortunately, it is often written down mysteriously as

(1)   \begin{align*} \{ A,B \}_\hbar = \frac{2}{\hbar} A \sin \left( \frac{\hbar}{2} \left(\overleftarrow{\partial}_x\overrightarrow{\partial}_p - \overleftarrow{\partial}_p\overrightarrow{\partial}_x \right) \right) B, \end{align*}

where the arrows over partial derivatives tell you which way they act, i.e., C (\overleftarrow{\partial}_x \overrightarrow{\partial}_p ) D = (\partial_x C)(\partial_p D). This only becomes slightly less weird when you use the equivalent formula \{ A,B \}_\hbar = (A \star B - B\star A)/(i\hbar), where “\star” is the Moyal star product given by

(2)   \begin{align*} A \star B =  A \exp \left( \frac{i\hbar}{2} \left(\overleftarrow{\partial}_x\overrightarrow{\partial}_p - \overleftarrow{\partial}_p\overrightarrow{\partial}_x \right) \right) B. \end{align*}

The star product has the crucial feature that \widehat{A \star B} = \widehat{A}\widehat{B}, where we use a hat to denote the Weyl transform (i.e., the inverse of the Wigner transform taking density matrices to Wigner functions), which takes a scalar function over phase-space to an operator over our Hilbert space. The star product also has some nice integral representations, which can be found in books like Curtright, Fairlie, & ZachosThe complete 88-page PDF is here.a  , but none of them help me understand the Moyal equation.

A key problem is that both of these expressions are neglecting the (affine) symplectic symmetry of phase space and the dynamical equations. Although I wouldn’t call it beautiful, we can re-write the star product as

(3)   \begin{align*} A \star B =  A \exp \left( \frac{i\hbar}{2} \overleftarrow{\partial}_a\overrightarrow{\partial}^a \right) B. \end{align*}

where a=x,p is a symplectic index using the Einstein summation convention, and where symplectic indices are raised and lowered using the symplectic form just as for Weyl spinors: v_a = \epsilon_{ab}v^b and w^a = \epsilon^{ab}w_b, where \epsilon is the antisymmetric symplectic form with \epsilon^{xp} = +1 = \epsilon_{px}, and where upper (lower) indices denote symplectic vectors (co-vectors).

With this, we can expand the Moyal equation as

    \begin{align*} \{ H,W \}_\hbar &= \frac{2}{\hbar} A \sin \left( \frac{\hbar}{2} \overleftarrow{\partial}_a\overrightarrow{\partial}^a \right) B \\ &= \sum_{n=0}^\infty \frac{(-\hbar^2/4)^n}{(2n+1)!} \left(\partial_{a_1}\cdots \partial_{a_{2n+1}} H\right)\left(\partial^{a_1}\cdots \partial^{a_{2n+1}} W\right) \\ &= (\partial_a H)(\partial^a W) - \frac{\hbar^2}{24}(\partial_a\partial_b\partial_c H)(\partial^a \partial^b \partial^c W) \\ &\qquad \qquad + \frac{\hbar^4}{80640}(\partial_a\partial_b\partial_c \partial_d \partial_e H)(\partial^a \partial^b \partial^c \partial^d \partial^e W) - \cdots  \end{align*}

where we can see in hideous explicitness that it’s a series in the even powers of \hbar and the odd derivates of the Hamiltonian H and the Wigner function W. Furthermore, as \hbar\to 0 we see it quickly reduces to the Poisson bracket \{A, B\} = (\partial_a A)(\partial^a B) = (\partial_x A)(\partial_p B)-(\partial_p A)(\partial_x B).

Footnotes

(↵ returns to text)

  1. The complete 88-page PDF is here.
Bookmark the permalink.

2 Comments

  1. Hi Jess, do you happen to know if there is an “intuitive” picture for the Moyal product?

    • I haven’t found one yet, although I’m still looking. I am somewhat pessimistic that one exists because, essentially, the Moyal star product has to package up all the weirdness of quantum mechanics and embed it in a classical framework. Only in the limit \hbar\to 0 for quasiclassical quantum systems does there really need to be something easily interpretable going on.

Leave a Reply

Include [latexpage] in your comment to render LaTeX equations with $'s. (More info.) May not be rendered in the live preview.

Your email address will not be published. Required fields are marked with a *.