Integrating with functional derivatives

I saw a neat talk at Perimeter a couple weeks ago on new integration techniques:

Speaker: Achim Kempf from University of Waterloo.
Title: “How to integrate by differentiating: new methods for QFTs and gravity”.

Abstract: I present a simple new all-purpose integration technique. It is quick to use, applies to functions as well as distributions and it is often easier than contour integration. (And it is not Feynman’s method). It also yields new quick ways to evaluate Fourier and Laplace transforms. The new methods express integration in terms of differentiation. Applied to QFT, the new methods can be used to express functional integration, i.e., path integrals, in terms of functional differentiation. This naturally yields the weak and strong coupling expansions as well as a host of other expansions that may be of use in quantum field theory, e.g., in the context of heat traces.

(Many talks hosted on PIRSA have a link to the mp4 file so you can directly download it. This talk does not, but you can right-click here and select “save as” to get the f4v file.This file format can be watched with VLC player. You can find it for any talk hosted by PIRSA by viewing the page source and searching the text for “.f4v”. There are many nice things about learning physics from videos, one of which is the ability to easily speed up the playback speed and skip around. In VLC player, playback speed can be incremented in 10% steps by pressing the left and right square brackets, ‘[‘ and ‘]’.a  )

The technique is based on the familiar trick of extracting a functional derivate inside a path integral and using integration by parts.… [continue reading]

Approach to equilibrium in a pure-state universe

(This post is vague, and sheer speculation.)

Following a great conversation with Miles Stoudenmire here at PI, I went back and read a paper I forgot about: “Entanglement and the foundations of statistical mechanics” by Popescu et al.S. Popescu, A. Short, and A. Winter, “Entanglement and the foundations of statistical mechanics” Nature Physics 2, 754 – 758 (2006) [Free PDF].a  . This is one of those papers that has a great simple idea, where you’re not sure if it’s profound or trivial, and whether it’s well known or it’s novel. (They cite references 3-6 as “Significant results along similar lines”; let me know if you’ve read any of these and think they’re more useful.) Anyways, here’s some background on how I think about this.

If a pure quantum state \vert \psi \rangle is drawn at random (according to the Haar measure) from a d_S d_E-dimensional vector space \mathcal{H}, then the entanglement entropy

    \[S(\rho_S) = \mathrm{Tr}[\rho_S \mathrm{log} \rho_S], \qquad \rho_S = \mathrm{Tr}_E[\vert \psi \rangle \langle \psi \vert]\]

across a tensor decomposition into system \mathcal{S} and environment \mathcal{E} is highly likely to be almost the maximum

    \[S_{\mathrm{max}} = \mathrm{log}_2(\mathrm{min}(d_S,d_E)) \,\, \mathrm{bits},\]

for any such choice of decomposition \mathcal{H} = \mathcal{S} \otimes \mathcal{E}. More precisely, if we fix d_S/d_E and let d_S\to \infty, then the fraction of the Haar volume of states that have entanglement entropy more than an exponentially small (in d_S) amount away from the maximum is suppressed exponentially (in d_S). This was known as Page’s conjectureD. Page, Average entropy of a subsystem.b  , and was later provedS. Foong and S. Kanno, Proof of Page’s conjecture on the average entropy of a subsystem.c  J. Sánchez-Ruiz, Simple proof of Page’s conjecture on the average entropy of a subsystem.d  ; it is a straightforward consequence of the concentration of measure phenomenon.… [continue reading]

Undetected photon imaging

Lemos et al. have a relatively recent letterG. Lemos, V. Borish, G. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons”, Nature 512, 409 (2014) [ arXiv:1401.4318 ].a   in Nature where they describe a method of imaging with undetected photons. (An experiment with the same essential quantum features was performed by Zou et al.X. Y. Zou, L. J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference”, Phys. Rev. Lett. 67, 318 (1991) [ PDF ].b   way back in 1991, but Lemos et al. have emphasized its implications for imaging.) The idea is conceptually related to decoherence detection, and I want to map one onto the other to flesh out the connection. Their figure 1 gives a schematic of the experiment, and is copied below.

The first two paragraphs of the letter contain all the meat, encrypted and condensed into an opaque nugget of the kind that Nature loves; it stands as a good example of the lamentable way many quantum experimental articles are written. Anyways, the rest of the letter is a straightforward application of the secret sauce.“But Jess”, you object, “shouldn’t Lemos et al. just concentrate on the part they are adding — the imaging application — and include only a cryptic and confusing summary of the prior work on which they build?” No way, Jose. Their imaging applications are only remotely interesting because of the quantum aspects that are contained in the original experiment. (No one would have cared about the last 80% of the letter if it weren’t spookily using undetected photons crucially dependent on quantum effects.) It is absolutely critical that the reader understand exactly what’s going on in the beginning for them to appreciate the claimed importance of this application, and this is extremely hard to do if it requires pulling up a 23 year old paper and trying to match up different terminology and notation, not to mention the fact that the extensive experimental details in that paper really aren’t relevant to notibility.[continue reading]

A dark matter model for decoherence detection

[Added 2015-1-30: The paper is now in print and has appeared in the popular press.]

One criticism I’ve had to address when proselytizing the indisputable charms of using decoherence detection methods to look at low-mass dark matter (DM) is this: I’ve never produced a concrete model that would be tested. My analysis (arXiv:1212.3061) addressed the possibility of using matter interferometry to rule out a large class of dark matter models characterized by a certain range for the DM mass and the nucleon-scattering cross section. However, I never constructed an explicit model as a representative of this class to demonstrate in detail that it was compatible with all existing observational evidence. This is a large and complicated task, and not something I could accomplish on my own.

I tried hard to find an existing model in the literature that met my requirements, but without luck. So I had to argue (with referees and with others) that this was properly beyond the scope of my work, and that the idea was interesting enough to warrant publication without a model. This ultimately was successful, but it was an uphill battle. Among other things, I pointed out that new experimental concepts can inspire theoretical work, so it is important that they be disseminated.

I’m thrilled to say this paid off in spades. Bateman, McHardy, Merle, Morris, and Ulbricht have posted their new pre-print “On the Existence of Low-Mass Dark Matter and its Direct Detection” (arXiv:1405.5536). Here is the abstract:

Dark Matter (DM) is an elusive form of matter which has been postulated to explain astronomical observations through its gravitational effects on stars and galaxies, gravitational lensing of light around these, and through its imprint on the Cosmic Microwave Background (CMB).

[continue reading]

New review of decoherence by Schlosshauer

Max Schlosshauer has a new review of decoherence and how it relates to understanding the quantum-classical transition. The abstract is:

I give a pedagogical overview of decoherence and its role in providing a dynamical account of the quantum-to-classical transition. The formalism and concepts of decoherence theory are reviewed, followed by a survey of master equations and decoherence models. I also discuss methods for mitigating decoherence in quantum information processing and describe selected experimental investigations of decoherence processes.

I found it very concise and clear for its impressive breadth, and it has extensive cites to the literature. (As you may suspect, he cites me and my collaborators generously!) I think this will become one of the go-to introductions to decoherence, and I highly recommend it to beginners.

Other introductory material is Schlosshauer’s textbook and RMP (quant-ph/0312059), Zurek’s RMP (quant-ph/0105127) and Physics Today article, and the textbook by Joos et al.… [continue reading]

Contextuality versus nonlocality

I wanted to understand Rob Spekkens’ self-described lonely view that the contextual aspect of quantum mechanics is more important than the non-local aspect. Although I like to think I know a thing or two about the foundations of quantum mechanics, I’m embarrassingly unfamiliar with the discussion surrounding contextuality. 90% of my understanding is comes from this famous explanation by David Bacon at his old blog. (Non-experts should definitely take the time to read that nice little post.) What follows are my thoughts before diving into the literature.

I find the map-territory distinction very important for thinking about this. Bell’s theorem isn’t a theorem about quantum mechanics (QM) per se, it’s a theorem about locally realistic theories. It says if the universe satisfies certain very reasonable assumption, then it will behave in a certain manner. We observe that it doesn’t behave in this manner, therefore the universe doesn’t satisfy those assumption. The only reason that QM come into it is that QM correctly predicts the misbehavior, whereas classical mechanics does not (since classical mechanics satisfies the assumptions).

Now, if you’re comfortable writing down a unitarily evolving density matrix of macroscopic systems, then the mechanism by which QM is able to misbehave is actually fairly transparent. Write down an initial state, evolve it, and behold: the wavefunction is a sum of branches of macroscopically distinct outcomes with the appropriate statistics (assuming the Born rule). The importance of Bell’s Theorem is not that it shows that QM is weird, it’s that it shows that the universe is weird. After all, we knew that the QM formalism violated all sorts of our intuitions: entanglement, Heisenberg uncertainty, wave-particle duality, etc.; we didn’t need Bell’s theorem to tell us QM was strange.… [continue reading]