
It is well known that, despite the misleading imagery conjured by the name, entanglement in a multipartite system cannot be understood in terms of pairwise entanglement of the parts. Indeed, there are only pairs of systems, but the number of qualitatively distinct types of entanglement scales exponentially in . A good way to think about this is to recognize that a quantum state of a multipartite system is, in terms of parameters, much more akin to a classical probability distribution than a classical state. When we ask about the information stored in a probability distributions, there are lots and lots of “types” of information, and correlations can be much more complex than just knowing all the pairwise correlations. (“It’s not just that A knows something about B, it’s that A knows something about B conditional on a state of C, and that information can only be unlocked by knowing information from either D or E, depending on the state of F…”).
However, Gaussian distributions (both quantum and classical) are described by a number of parameters that grows on quadratically with the number of variables. The pairwise correlations really do tell you everything there is to know about the quantum state or classical distribution. The above paper makes me wonder to what extent we can understand multipartite Gaussian entanglement in terms of pairs of modes. They have shown that this works at a single level, that entanglement across a bipartition can be decomposed into modewise entangled pairs. But since this doesn’t work for mixed states, it’s not clear how to proceed in understanding the remain entanglement within a partition. My intuition is that there is a canonical decomposition of the Gaussian state that, in some sense, lays bare all the multipartite entanglement it has in any possible partitioning, in much the same way that the eigendecomposition of a matrix exposes its the inner workings.
LaTeX in comments
Include [latexpage] to render LaTeX in comments. (More.)Recent Comments
 Wigner function = Fourier transform + Coordinate rotation (5)
 Mahmoud Now I know that the negative values of Wigner function represents of the nonclassical state... – Sep 13, 1:18 PM
 Jess Riedel Thanks Lucy. Sorry about the spam filter; the options provided by Wordpress are crummy and... – Aug 26, 8:39 AM
 Lucy Keer Oops, that was a bit unclear  meant to say that I tried to add... – Aug 26, 7:45 AM
 Lucy Keer Thanks very much for writing this up! I had very similar frustrations recently in trying... – Aug 26, 7:40 AM
 Links for AprilMay 2018 (8)
 Devin Bayer Hi Jess, I found your blog via another physics blog and subscribed because I found... – Aug 04, 3:29 PM
 Yuan Hi Jess, long time reader and occasional commenter here. Your monthly internet selection posts are... – Jun 18, 11:29 AM
 Top posts (2)
 Jess Riedel Howdy Don. This one isn't very sophisticated. I saw a comment on a funny cat... – Jul 28, 11:37 AM
 Don Wright Jess. Greetings. Wondering where your interest in the hyoid bone and cat clavicles came from...... – Jul 28, 10:00 AM
 Links for July 2018 (3)
 Yuan Now the problem seems to be gone (at least for NewsBlur). Thanks! Yuan – Jul 18, 3:30 AM
 Jess Riedel Yikes, it looks like I'm not getting it on my feed reader either. That would... – Jul 17, 8:39 PM
 Yuan Hi Jess, I have been experiencing difficulties with the RSS feed of your blog lately.... – Jul 17, 5:40 PM
 Wigner function = Fourier transform + Coordinate rotation (5)
Licence
foreXiv by C. Jess Riedel is licensed under a Creative Commons AttributionShareAlike 4.0 International License.