My talk on ideal quantum Brownian motion

I have blogged before about the conceptual importance of ideal, symplectic covariant quantum Brownian motion (QBM). In short: QBM is to open quantum systems as the harmonic oscillator is to closed quantum systems. Like the harmonic oscillator, (a) QBM is universal because it’s the leading-order behavior of a taylor series expansion; (b) QBM evolution has a very intuitive interpretation in terms of wavepackets evolving under classical flow; and (c) QBM is exactly solvable.

If that sounds like a diatribe up your alley, then you are in luck. I recently ranted about it here at PI. It’s just a summary of the literature; there are no new results. As always, I recommend downloading the raw video file so you can run it at arbitrary speed.


Abstract: In the study of closed quantum system, the simple harmonic oscillator is ubiquitous because all smooth potentials look quadratic locally, and exhaustively understanding it is very valuable because it is exactly solvable. Although not widely appreciated, Markovian quantum Brownian motion (QBM) plays almost exactly the same role in the study of open quantum systems. QBM is ubiquitous because it arises from only the Markov assumption and linear Lindblad operators, and it likewise has an elegant and transparent exact solution.
[continue reading]

Bullshit in science

Francisco Azuaje (emphasis mine):

According to American philosopher Harry FrankfurtHere’s Frankfurt’s popular essay [PDF]. a  , a key difference between liars and bullshitters is that the former tend to accept that they are not telling the truth, while the latter simply do not care whether something is true or not.

Bullshitters strive to maximize personal gain through a continuing distortion of reality. If something is true and can be manipulated to achieve their selfish objectives, then good. If something is not true, who cares? All the same. These attributes make bullshitting worse than lying.

Furthermore, according to Frankfurt, it is the bullshitter’s capacity to get away with bullshitting so easily that makes them particularly dangerous. Individuals in prominent positions of authority may be punished for lying, especially if lying has serious damaging consequences. Professional and casual bullshitters at all levels of influence typically operate with freedom. Regardless of their roles in society, their exposure is not necessarily accompanied by negative legal or intellectual consequences, at least for the bullshitter…

Researchers may also be guilty of bullshitting by omission. This is the case when they do not openly challenge bullshitting positions, either in the public or academic settings. Scientists frequently wrongly assume that the public always has knowledge of well-established scientific facts.

[continue reading]

Comments on Rosaler’s “Reduction as an A Posteriori Relation”

In a previous post of abstracts, I mentioned philosopher Josh Rosaler’s attempt to clarify the distinction between empirical and formal notions of “theoretical reduction”. Reduction is just the idea that one theory reduces to another in some limit, like Galilean kinematics reduces to special relativity in the limit of small velocities.Confusingly, philosophers use a reversed convention; they say that Galilean mechanics reduces to special relativity. a   Formal reduction is when this takes the form of some mathematical limiting procedure (e.g., v/c \to 0), whereas empirical reduction is an explanatory statement about observations (e.g., “special relativity can explains the empirical usefulness of Galilean kinematics”).

Rosaler’s criticism, which I mostly agree with, is that folks often conflate these two. Usually this isn’t a serious problem since the holes can be patched up on the fly by a competent physicist, but sometimes it leads to serious trouble. The most egregious case, and the one that got me interested in all this, is the quantum-classical transition, and in particular the serious insufficiency of existing \hbar \to 0 limits to explain the appearance of macroscopic classicality. In particular, even though this limiting procedure recovers the classical equations of motion, it fails spectacularly to recover the state space.… [continue reading]

Links for May 2016

  • The Peacock Spider (Maratus speciosus):

    If you haven’t long ago seen the BBC Earth bit on the birds of paradise, check it out.
  • If you use Zotero and iOS, then check out PaperShip. I have two or three minor complaints, but on the whole it is very high quality.
  • The New Mexico whiptail is like a mule in that it’s a hybrid of two species, but unlike the mule it can reproduce semi-cloning:

    The New Mexico whiptail (Cnemidophorus neomexicanus) is a female species of lizard found in the southern United States in New Mexico and Arizona, and in northern Mexico in Chihuahua. It is the official state reptile of New Mexico. It is one of many lizard species known to be parthenogenic. Individuals of the species can be created either through the hybridization of the little striped whiptail (C. inornatus) and the western whiptail (C. tigris), or through the parthenogenic reproduction of an adult New Mexico whiptail.

    The hybridization of these species prevents healthy males from forming whereas males do exist in both parent species (see Sexual differentiation). Parthenogenesis allows the resulting all-female population to reproduce and thus evolve into a unique species capable of reproduction. This combination of interspecific hybridization and parthenogenesis exists as a reproductive strategy in several species of whiptail lizard within the Cnemidophorus genus to which the New Mexico whiptail belongs.

[continue reading]

Links for April 2016

  • Paul Christiano has bet me $500 at even odds that a self-driving car can be reliably hailed by a member of the general public in at least 10 North American cities by July 2023.

    Details: At least 8 cities must be outside San Fransisco Bay Area. The car must available on at least 50% of days, i.e., not confined to very narrow weather or traffic situations. The car must be self-delivering, in the sense that it drives itself to the user, but not necessarily fully self-driving, in the sense that the user might need to drive it to the destination. (It’s easy to imagine tech and regulatory scenarios where self-driven cars are limited to speeds that are unacceptably slow during transportation of passengers, like the ~20 mph that Google’s car usually does, but are sufficient for getting to the hailing passenger if the density is high enough.) Carl Shulman will adjudicate any edge cases.

    I ascribe a 45% chance that a self-delivering car reaches this threshold, and 38% chance that a fully self-driving car does.

    Here’s a list of optimistic predictions for self-driving car timelines, which notably doesn’t mention the recent Google pessimism.

  • People I know build great stuff!
[continue reading]

Abstracts for March-April 2016

  • Unruh effect without trans-horizon entanglement
    Carlo Rovelli and Matteo Smerlak
    We estimate the transition rates of a uniformly accelerated Unruh-DeWitt detector coupled to a quantum field with reflecting conditions on a boundary plane (a “mirror”). We find that these are essentially indistinguishable from the usual Unruh rates, viz. that the Unruh effect persists in the presence of the mirror. This shows that the Unruh effect (thermality of detector rates) is not merely a consequence of the entanglement between left and right Rindler quanta in the Minkowski vacuum. Since in this setup the state of the field in the Rindler wedge is pure, we argue furthermore that the relevant entropy in the Unruh effect cannot be the von Neumann entanglement entropy. We suggest, an alternative, that it is the Shannon entropy associated with Heisenberg uncertainty.

    See also the related works by Gooding and Unruh, which connect to Pikovski et al. (blogged here).

  • What is the Entropy in Entropic Gravity?
    Sean M. Carroll and Grant N. Remmen
    We investigate theories in which gravity arises as a consequence of entropy. We distinguish between two approaches to this idea: holographic gravity, in which Einstein's equation arises from keeping entropy stationary in equilibrium under variations of the geometry and quantum state of a small region, and thermodynamic gravity, in which Einstein's equation emerges as a local equation of state from constraints on the area of a dynamical lightsheet in a fixed spacetime background.
[continue reading]

Redundant consistency

I’m happy to announce the recent publication of a paper by Mike, Wojciech, and myself.

The Objective Past of a Quantum Universe: Redundant Records of Consistent Histories
C. Jess Riedel, Wojciech H. Zurek, and Michael Zwolak
Motivated by the advances of quantum Darwinism and recognizing the role played by redundancy in identifying the small subset of quantum states with resilience characteristic of objective classical reality, we explore the implications of redundant records for consistent histories. The consistent histories formalism is a tool for describing sequences of events taking place in an evolving closed quantum system. A set of histories is consistent when one can reason about them using Boolean logic, i.e., when probabilities of sequences of events that define histories are additive. However, the vast majority of the sets of histories that are merely consistent are flagrantly nonclassical in other respects. This embarras de richesses (known as the set selection problem) suggests that one must go beyond consistency to identify how the classical past arises in our quantum universe. The key intuition we follow is that the records of events that define the familiar objective past are inscribed in many distinct systems, e.g., subsystems of the environment, and are accessible locally in space and time to observers.
[continue reading]

ArXiv and Zotero surveys

Quick note: the arXiv is administering a survey of user opinion on potential future changes, many of which were discussed previously on this blog. It can be reached by clicking the banner on the top of the arXiv homepage. I encourage you to take the survey if you haven’t already. (Doubly so if you agree with me…)

Likewise, Zotero is administering a somewhat shorter survey about what sorts of folks use Zotero and what they do with it.

To the question “Do you have suggestions for any of the above-mentioned new services, or any other new services you would like to see in arXiv?”, I responded:

I think the most important thing the arXiv to do would be to “nudge” authors toward releasing their work with a copyleft, e.g., Creative Commons – Attribution. (Or at least stop nudging them toward the minimal arXiv license, as is done now in the submission process.) For instance, make it clear to authors that if they publish in various open access journals that they should release the arXiv post on a similarly permissive license. Also, make is easier for authors to make the license more permissive at a later date once they know where they are publishing.

[continue reading]

Links for March 2016

[continue reading]

PhysWell

Question: What sort of physics — if any — should be funded on the margin right now by someone trying to maximize positive impact for society, perhaps over the very long term?

First, it’s useful to separate the field into fundamental physics and non-fundamental physics, where the former is concerned with discovering new fundamental laws of the universe (particle physics, high-energy theory, cosmology, some astrophysics) and the latter applies accepted laws to understand physical systems (condensed matter, material physics, quantum information and control, plasma physics, nuclear physics, fluid dynamics, biophysics, atomic/molecular/optical physics, geophysics).Some folks like David Nelson dispute the importance/usefulness of this distinction: PDF. In my opinion, he is correct, but only about the most boring part of fundamental physics (which has unfortunately dominated most of those subfields). More speculative research, such as the validity (!!!) of quantum mechanics, is undeniably of a different character from the investigation of low-energy field theories. But that point isn’t important for the present topic. a  

That distinction made, let’s dive in.

Non-fundamental physics

Let’s first list some places where non-fundamental physics might have a social impact:

  1. condensed matter and material science discoveries that give high-temperature superconductors, stronger/lighter/better-insulating/better-conducting materials, higher density batteries, new computing architectures, better solar cells;
  2. quantum information discoveries that make quantum computers more useful than we currently think they will be, especially a killer app for quantum simulations;
  3. plasma physics discoveries that make fusion power doable, or fission power cheaper;
  4. quantum device technologies that allow for more precise measurements;
  5. climate physics (vague);Added 2016-Dec-20.
[continue reading]

Links for February 2016

Just in the nick of time…

  • Eliezer Yudkowsky has a large Facebook thread resulting in many public bets on the Lee Sedol vs DeepMind’s AlphaGo match.

    In particular, I have bet Carl Shulman $100 at even odd that Sedol will win. (For the record, my confidence is low, and if I win it will be mostly luck.) The match, taking place March 9-15, will be streamed live on YouTube.

    Relatedly, here is excellent (if slightly long winded) discussion of why the apparent jump in AI Go ability may be partially attributable to a purposeful application of additional computing power and researcher GO-specific expertise, rather than purely a large jump in domain-general AI power.

  • SciHub has been in the news recently, and I guess they decided to upgrade their appearance.
  • Victorian Humor.
  • Want a postdoc doing theoretical physics, machine learning, and genomics? You’re in luck.
  • Luke Muehlhauser has good quote from Bill Gates on AI timelines.
  • Assortative Mating—A Missing Piece in the Jigsaw of Psychiatric Genetics“.

    Why are psychiatric disorders so highly heritable when they are associated with reduced fecundity? Why are some psychiatric disorders so much more highly heritable than others? Why is there so much genetic comorbidity across psychiatric disorders?

[continue reading]

Abstracts for February 2016

  • Non-Markovianity hinders Quantum Darwinism
    Fernando Galve, Roberta Zambrini, and Sabrina Maniscalco
    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

    Galve and collaborators recognize that the recent Nat. Comm. by Brandao et al is not as universal as it is sometimes interpretted, because the records that are proved to exist can be trivial (no info). So Galve et al. correctly emphasize that Darwinism is dependent on the particular dynamics found in our universe, and the effectiveness of record production is in principle an open question.

    Their main model is a harmonic oscillator in an oscillator bath (with bilinear spatial couplings, as usual) and with a spectral density that is concentrated as a hump in some finite window. (See black line with grey shading in Fig 3.) They then vary the system’s frequency with respect to this window.

[continue reading]

Comments on Stern, journals, and incentives

David L. Stern on changing incentives in science by getting rid of journals:

Instead, I believe, we will do better to rely simply on the scientific process itself. Over time, good science is replicated, elevated, and established as most likely true; bad science may be unreplicated, flaws may be noted, and it usually is quietly dismissed as untrue. This process may take considerable time—sometimes years, sometimes decades. But, usually, the most egregious papers are detected quickly by experts as most likely garbage. This self-correcting aspect of science often does not involve explicit written documentation of a paper’s flaws. The community simply decides that these papers are unhelpful and the field moves in a different direction.

In sum, we should stop worrying about peer review….

The real question that people seem to be struggling with is “How will we judge the quality of the science if it is not peer reviewed and published in a journal that I ‘respect’?” Of course, the answer is obvious. Read the papers! But here is where we come to the crux of the incentive problem. Currently, scientists are rewarded for publishing in “top” journals, on the assumption that these journals publish only great science. Since this assumption is demonstrably false, and since journal publishing involves many evils that are discussed at length in other posts, a better solution is to cut journals out of the incentive structure altogether.

[continue reading]

KS entropy generated by entanglement-breaking quantum Brownian motion

A new paper of mine (PRA 93, 012107 (2016), arXiv:1507.04083) just came out. The main theorem of the paper is not deep, but I think it’s a clarifying result within a formalism that is deep: ideal quantum Brownian motion (QBM) in symplectic generality. In this blog post, I’ll refresh you on ideal QBM, quote my abstract, explain the main result, and then — going beyond the paper — show how it’s related to the Kolmogorov-Sinai entropy and the speed at which macroscopic wavefunctions branch.

Ideal QBM

If you Google around for “quantum Brownian motion”, you’ll come across a bunch of definitions that have quirky features, and aren’t obviously related to each other. This is a shame. As I explained in an earlier blog post, ideal QBM is the generalization of the harmonic oscillator to open quantum systems. If you think harmonic oscillator are important, and you think decoherence is important, then you should understand ideal QBM.

Harmonic oscillators are ubiquitous in the world because all smooth potentials look quadratic locally. Exhaustively understanding harmonic oscillators is very valuable because they are exactly solvable in addition to being ubiquitous. In an almost identical way, all quantum Markovian degrees of freedom look locally like ideal QBM, and their completely positive (CP) dynamics can be solved exactly.… [continue reading]

Links for January 2016

  • Mechanistic insight into schizophrenia?
  • Wide-ranging (and starry-eyed) discussion on HackerNews about what startup can do to make the world a better place.
  • All six naked-eye-visible planets in one wide-angle image.

    (Source.) You can see the current configuration of the solar system here.
  • Holden Karnofsky argues persuasively that selection bias implies that we should have fewer and more high-quality studies than we would in a hypothetical world with ideal, unbiased researchers.

    Chris Blattman worries that there is too much of a tendency toward large, expensive, perfectionist studies, writing:

    …each study is like a lamp post. We might want to have a few smaller lamp posts illuminating our path, rather than the world’s largest and most awesome lamp post illuminating just one spot. I worried that our striving for perfect, overachieving studies could make our world darker on average.

    My feeling – shared by most of the staff I’ve discussed this with – is that the trend toward “perfect, overachieving studies” is a good thing…

    Bottom line. Under the status quo, I get very little value out of literatures that have large numbers of flawed studies – because I tend to suspect the flaws of running in the same direction.

[continue reading]