State-independent consistent sets

In May, Losada and Laura wrote a paperM. Losada and R. Laura, Annals of Physics 344, 263 (2014). a   pointing out the equivalence between two conditions on a set of “elementary histories” (i.e. fine-grained historiesGell-Mann and Hartle usually use the term “fine-grained set of histories” to refer to a set generated by the finest possible partitioning of histories in path integral (i.e. a point in space for every point in time), but this is overly specific. As far as the consistent histories framework is concerned, the key mathematical property that defines a fine-grained set is that it’s an exhaustive and exclusive set where each history is constructed by choosing exactly one projector from a fixed orthogonal resolution of the identity at each time. b  ). Let the elementary histories \alpha = (a_1, \dots, a_N) be defined by projective decompositions of the identity P^{(i)}_{a_i}(t_i) at time steps t_i (i=1,\ldots,N), so that

(1)   \begin{align*} P^{(i)}_a &= (P^{(i)}_a)^\dagger \quad \forall i,a \\ P^{(i)}_a P^{(i)}_b &= \delta_{a,b} P^{(i)}_a \quad \forall i,a,b\\ \sum_{a} P^{(i)}_a (t_i) &= I \quad  \forall i,k \\ C_\alpha &= P^{(N)}_{a_N} (t_N) \cdots P^{(1)}_{a_1} (t_1) \\ I &= \sum_\alpha C_\alpha = \sum_{a_1}\cdots \sum_{a_N} C_\alpha \\ \end{align*}

where C_\alpha are the class operators. Then Losada and Laura showed that the following two conditions are equivalent

  1. The set is consistent“Medium decoherent” in Gell-Mann and Hartle’s terminology. Also note that Losada and Laura actually work with the obsolete condition of “weak decoherence”, but this turns out to be an unimportance difference.
[continue reading]

How to think about Quantum Mechanics—Part 2: Vacuum fluctuations

[Other parts in this series: 1,2,3,4,5,6.]

Although it is possible to use the term “vacuum fluctuations” in a consistent manner, referring to well-defined phenomena, people are usually way too sloppy. Most physicists never think clearly about quantum measurements, so the term is widely misunderstood and should be avoided if possible. Maybe the most dangerous result of this is the confident, unexplained use of this term by experienced physicists talking to students; it has the awful effect of giving these student the impression that their inevitable confusion is normal and not indicative of deep misunderstanding“Professor, where do the wiggles in the cosmic microwave background come from?” “Quantum fluctuations”. “Oh, um…OK.” (Yudkowsky has usefully called this a “curiosity-stopper”, although I’m sure there’s another term for this used by philosophers of science.) a  .

Here is everything you need to know:

  1. A measurement is specified by a basis, not by an observable. (If you demand to think in terms of observables, just replace “measurement basis” with “eigenbasis of the measured observable” in everything that follows.)
  2. Real-life processes amplify microscopic phenomena to macroscopic scales all the time, thereby effectively performing a quantum measurement.
[continue reading]

Lindblad Equation is differential form of CP map

The Master equation in Lindblad form (aka the Lindblad equation) is the most general possible evolution of an open quantum system that is Markovian and time-homogeneous. Markovian means that the way in which the density matrix evolves is determined completely by the current density matrix. This is the assumption that there are no memory effects, i.e. that the environment does not store information about earlier state of the system that can influence the system in the future.Here’s an example of a memory effect: An atom immersed in an electromagnetic field can be in one of two states, excited or ground. If it is in an excited state then, during a time interval, it has a certain probability of decaying to the ground state by emitting a photon. If it is in the ground state then it also has a chance of becoming excited by the ambient field. The situation where the atom is in a space of essentially infinite size would be Markovian, because the emitted photon (which embodies a record of the atom’s previous state of excitement) would travel away from the atom never to interact with it again. It might still become excited because of the ambient field, but its chance of doing so isn’t influenced by its previous state.[continue reading]

Potentials and the Aharonov–Bohm effect

[This post was originally “Part 1” of my HTTAQM series. However, it’s old, haphazardly written, and not a good starting point. Therefore, I’ve removed it from that series, which now begins with “Measurements are about bases”. Other parts are here: 1,2,3,4,5,6. I hope to re-write this post in the future.]

It’s often remarked that the Aharonov–Bohm (AB) effect says something profound about the “reality” of potentials in quantum mechanics. In one version of the relevant experiment, charged particles are made to travel coherently along two alternate paths, such as in a Mach-Zehnder interferometer. At the experimenter’s discretion, an external electromagnetic potential (either vector or scalar) can be applied so that the two paths are at different potentials yet still experience zero magnetic and electric field. The paths are recombined, and the size of the potential difference determines the phase of the interference pattern. The effect is often interpreted as a demonstration that the electromagnetic potential is physically “real”, rather than just a useful mathematical concept.


The magnetic Aharanov-Bohm effect. The wavepacket of an electron approaches from the left and is split coherently over two paths, L and R.
[continue reading]

A dark matter model for decoherence detection

[Added 2015-1-30: The paper is now in print and has appeared in the popular press.]

One criticism I’ve had to address when proselytizing the indisputable charms of using decoherence detection methods to look at low-mass dark matter (DM) is this: I’ve never produced a concrete model that would be tested. My analysis (arXiv:1212.3061) addressed the possibility of using matter interferometry to rule out a large class of dark matter models characterized by a certain range for the DM mass and the nucleon-scattering cross section. However, I never constructed an explicit model as a representative of this class to demonstrate in detail that it was compatible with all existing observational evidence. This is a large and complicated task, and not something I could accomplish on my own.

I tried hard to find an existing model in the literature that met my requirements, but without luck. So I had to argue (with referees and with others) that this was properly beyond the scope of my work, and that the idea was interesting enough to warrant publication without a model. This ultimately was successful, but it was an uphill battle. Among other things, I pointed out that new experimental concepts can inspire theoretical work, so it is important that they be disseminated.… [continue reading]

Diagonal operators in the coherent state basis

I asked a question back in November on Physics.StackExchange, but that didn’t attract any interest from anyone. I started thinking about it again recently and figured out a good solution. The question and answer are explained below.I posted the answer on Physics.SE too since they encourage the answering of one’s own question. How lonely is that?!? a  

Q: Is there a good notion of a “diagonal” operator with respect the overcomplete basis of coherent states?
A: Yes. The operators that are “coherent-state diagonal” are those that have a smooth Glauber–Sudarshan P transform.

The primary motivation for this question is to get a clean mathematical condition for diagonality (presumably with a notion of “approximately diagonal”) for the density matrix of a system of a continuous degree of freedom being decohered. More generally, one might like to know the intuitive sense in which X, P, and X+P are all approximately diagonal in the basis of wavepackets, but RXR^\dagger is not, where R is the unitary operator which maps

(1)   \begin{align*} \vert x \rangle \to (\vert x \rangle + \mathrm{sign}(x) \vert - x \rangle) / \sqrt{2}. \end{align*}

(This operator creates a Schrodinger’s cat state by reflecting about x=0.)

For two different coherent states \vert \alpha \rangle and \vert \beta \rangle, we want to require an approximately diagonal operator A to satisfy \langle \alpha \vert A \vert \beta \rangle \approx 0, but we only want to do this if \langle \alpha \vert \beta \rangle \approx 0.… [continue reading]

Comments on Tegmark’s ‘Consciousness as a State of Matter’

[Edit: Scott Aaronson has posted on his blog with extensive criticism of Integrated Information Theory, which motivated Tegmark’s paper.]

Max Tegmark’s recent paper entitled “Consciousness as a State of Matter” has been making the rounds. See especially Sabine Hossenfelder’s critique on her blog that agrees in several places with what I say below.

Tegmark’s paper didn’t convince me that there’s anything new here with regards to the big questions of consciousness. (In fairness, I haven’t read the work of neuroscientist Giulio Tononi that motivated Tegmark’s claims). However, I was interested in what he has to say about the proper way to define subsystems in a quantum universe (i.e. to “carve reality at its joints”) and how this relates to the quantum-classical transition. There is a sense in which the modern understanding of decoherence simplifies the vague questions “How does (the appearance of) a classical world emerge in a quantum universe? ” to the slightly-less-vague question “what are the preferred subsystems of the universe, and how do they change with time?”. Tegmark describes essentially this as the “quantum factorization problem” on page 3. (My preferred formulation is as the “set-selection problem” by Dowker and Kent. Note that this is a separate problem from the origin of probability in quantum mechanicsThe problem of probability as described by Weinberg: “The difficulty is not that quantum mechanics is probabilistic—that is something we apparently just have to live with.[continue reading]

New review of decoherence by Schlosshauer

Max Schlosshauer has a new review of decoherence and how it relates to understanding the quantum-classical transition. The abstract is:

I give a pedagogical overview of decoherence and its role in providing a dynamical account of the quantum-to-classical transition. The formalism and concepts of decoherence theory are reviewed, followed by a survey of master equations and decoherence models. I also discuss methods for mitigating decoherence in quantum information processing and describe selected experimental investigations of decoherence processes.

I found it very concise and clear for its impressive breadth, and it has extensive cites to the literature. (As you may suspect, he cites me and my collaborators generously!) I think this will become one of the go-to introductions to decoherence, and I highly recommend it to beginners.

Other introductory material is Schlosshauer’s textbook and RMP (quant-ph/0312059), Zurek’s RMP (quant-ph/0105127) and Physics Today article, and the textbook by Joos et al.… [continue reading]

Entanglement never at first order

When two initially uncorrelated quantum systems interact through a weak coupling, no entanglement is generated at first order in the coupling constant. This is a useful and very easy to prove fact that I haven’t seen pointed out anywhere, although I assume someone has. I’d love a citation reference if you have one.

Suppose two systems \mathcal{A} and \mathcal{B} evolve under U = \exp(- i H t) where the Hamiltonian coupling them is of the form

(1)   \begin{align*} H=H_A + H_B + \epsilon H_I, \end{align*}

with H_A = H_A \otimes I_B and H_B = I_A \otimes H_B as usual. We’ll show that when the systems start out uncorrelated, \vert \psi^0 \rangle = \vert \psi_A^0 \rangle \otimes \vert \psi_B^0 \rangle, they remain unentangled (and therefore, since the global state is pure, uncorrelated) to first order in \epsilon. First, note that local unitaries cannot change the entanglement, so without loss of generality we can consider the modified unitary

(2)   \begin{align*} U' = e^{+i H_A t} e^{+i H_B t} e^{-i H t} \end{align*}

which peels off the unimportant local evolution of \mathcal{A} and \mathcal{B}. Then the Baker–Campbell–Hausdorff formula gives

(3)   \begin{align*} U' = e^{+i H_A t} e^{+i H_B t} e^{-i (H_A + H_B) t} e^{-i \epsilon H_I t}  e^{Z_2} e^{Z_3} \cdots \end{align*}

where the first few Z‘s are given by

(4)   \begin{align*} Z_2 &= \frac{(-i t)^2}{2} [H_A+H_B,\epsilon H_I] \\ Z_3 &= \frac{(-i t)^3}{12} \Big( [H_A+H_B,[H_A+H_B,\epsilon H_I]]-  [\epsilon H_I,[H_A+H_B,\epsilon H_I]] \Big) \\ Z_4 &= \cdots. \end{align*}

The key feature here is that every commutators in each of the Z‘s contains at least one copy of \epsilon H_I, i.e. all the Z‘s are at least first order in \epsilon. That allows us to write

(5)   \begin{align*} U' = e^{-i \epsilon H'_I t} \big(1 + O(\epsilon^2) \big) \end{align*}

for some new H'_I that is independent of \epsilon. Then we note just that a general Hamiltonian cannot produce entanglement to first order:

(6)   \begin{align*} \rho_A &= \mathrm{Tr}_B \left[ U' \vert \psi^0 \rangle \langle \psi^0 \vert {U'}^\dagger \right] \\ &=  \vert \psi'_A \rangle \langle \psi'_A \vert + O(\epsilon^2) \end{align*}

where

(7)   \begin{align*} \vert \psi'_A \rangle &= \left( I - i \epsilon t \langle \psi^0_B  \vert H_I' \vert  \psi^0_B \rangle \right) \vert \psi^0_A \rangle . \end{align*}

This is potentially a very important (negative) result when considering decoherence detection of very weakly coupled particles.… [continue reading]

Follow up on contextuality and non-locality

This is a follow up on my earlier post on contextuality and non-locality. As far as I can tell, Spekken’s paper is the gold standard for how to think about contextuality in the messy real world. In particular, since the idea of “equivalent” measurements is key, we might never be able to establish that we are making “the same” measurement from one experiment to the next; there could always be small microscopic differences for which we are unable to account. However, Spekken’s idea of forming equivalence classes from measurement protocols that always produce the same results is very natural. It isolates, as much as possible, the inherent ugliness of a contextual model that gives different ontological descriptions for measurements that somehow always seem to give identical results.

I also learned an extremely important thing in my background reading. Apparently John Bell discovered contextuality a few years before Kochen and Specker (KS).This is according to Mermin’s RMP on contextuality and locality. I haven’t gone back and read Bell’s papers to make sure he really did describe something equivalent to the KS theorem. a   More importantly, Bell’s theorem on locality grew out of this discovery; the theorem is just a special case of contextuality where “the context” is a space-like separated measurement.… [continue reading]

Wigner function = Fourier transform + Coordinate rotation

[Follow-up post: In what sense is the Wigner function a quasiprobability distribution?]

I’ve never liked how people introduce the Wigner function (aka the Wigner quasi-probability distribution). Usually, they just write down a definition like

(1)   \begin{align*} W(x,p) = \frac{1}{\pi \hbar} \int \mathrm{d}y \rho(x+y, x-y) e^{-2 i p y/\hbar} \end{align*}

and say that it’s the “closest phase-space representation” of a quantum state. One immediately wonders: What’s with the weird factor of 2, and what the heck is y? Usually, the only justification given for the probability interpretation is that integrating over one of the variables recovers the probability distribution for the other (if it were measured):

(2)   \begin{align*} \int \! \mathrm{d}p \, W(x,p) = \vert \rho(x,x) \vert^2 , \\ \int \! \mathrm{d}x \, W(x,p) = \vert \hat{\rho}(p,p) \vert^2 , \end{align*}

where \hat{\rho}(p,p') is just the density matrix in the momentum basis. But of course, that doesn’t really tell us why we should think of W(x,p), as having anything to do with the (rough) value of x conditional on a (rough) value of p.

Well now I have a much better idea of what the Wigner function actually is and how to interpret it. We start by writing it down in sane variables (and suppress \hbar):

(3)   \begin{align*} W(\bar{x},\bar{p}) = \frac{1}{2 \pi} \int \! \mathrm{d}\Delta x \,\rho \left(\bar{x}+\frac{\Delta x}{2}, \bar{x}-\frac{\Delta x}{2} \right) e^{-i \bar{p} \Delta x}. \end{align*}

So the first step in the interpretation is to consider the function

(4)   \begin{align*} M(\bar{x},\Delta x) \equiv  \rho \left(\bar{x}+\frac{\Delta x}{2}, \bar{x}-\frac{\Delta x}{2} \right) , \end{align*}

which appears in the integrand. This is just the (position-space) density matrix in rotated coordinates \bar{x} \equiv (x+x')/2 and \Delta x = x-x'.… [continue reading]

Wavepacket spreading produces force sensitivity

I’m still trying to decide if I understand this correctly, but it looks like coherent wavepacket spreading is sufficient to produce states of a test-mass that are highly sensitive to weak forces. The Wigner function of a coherent wavepacket is sheared horizontally in phase space (see hand-drawn figure). A force that perturbs it slightly with a small momentum shift will still produce an orthogonal state of the test mass.


The Gaussian wavepacket of a test mass (left) will be sheared horizontally in phase space by the free-particle evolution governed by H=p^2/2m. A small vertical (i.e. momentum) shift by a weak force can then produce an orthogonal state of the test mass, while it would not for the unsheared state. However, discriminating between the shifted and unshifted wavepackets requires a momentum-like measurement; position measurements would not suffice.

Of course, we could simply start with a wavepacket with a very wide spatial width and narrow momentum width. Back when this was being discussed by Caves and others in the ’80s, they recognized that these states would have such sensitivity. However, they pointed out, this couldn’t really be exploited because of the difficulty in making true momentum measurements. Rather, we usually measure momentum indirectly by allowing the normal free-particle (H=p^2/2m) evolution carry the state to different points in space, and then measuring position.… [continue reading]

Comments on Gell-Mann & Hartle’s latest

Back in December Gell-Mann and Hartle (G&H) posted their latest paper on consistent histories, “Adaptive Coarse Graining, Environment, Strong Decoherence, and Quasiclassical Realms”. Here are my thoughts.

The discussion of adaptive coarse graining was brief and very much in agreement with previous work.

G&H then give a name and formal description to the idea, long part of the intuitive lore, of a history being defined by the values taken by a particular variable over many time step. (This might be the position of an object, which is being recorded to some accuracy by a environment that decoheres it.) The key idea is that all the Schrödinger-picture projectors P^{k}_{\alpha_k} at different times t_k defining the history commute:

(1)   \begin{align*} [P^{k}_{\alpha_k},P^{k'}_{\alpha_{k'}}]=0 \quad \forall k,k' \end{align*}

This they call the narrative condition. From it, one is able to define a smallest set of maximal projectors Q_i (which they call a common framework) that obey either Q_i \le P^{k}_{\alpha_k} or Q_i  P^{k}_{\alpha_k} = P^{k}_{\alpha_k} Q_i = 0 for all P^{k}_{\alpha_k}. For instance, if the P‘s are onto spatial volumes of position, then the Q‘s are just the minimal partition of position space such that the region associated with each Q_i is fully contained in the regions corresponding to some of the P^{k}_{\alpha_k}, and is completely disjoint from the regions corresponding to the others.… [continue reading]

Contextuality versus nonlocality

I wanted to understand Rob Spekkens’ self-described lonely view that the contextual aspect of quantum mechanics is more important than the non-local aspect. Although I like to think I know a thing or two about the foundations of quantum mechanics, I’m embarrassingly unfamiliar with the discussion surrounding contextuality. 90% of my understanding is comes from this famous explanation by David Bacon at his old blog. (Non-experts should definitely take the time to read that nice little post.) What follows are my thoughts before diving into the literature.

I find the map-territory distinction very important for thinking about this. Bell’s theorem isn’t a theorem about quantum mechanics (QM) per se, it’s a theorem about locally realistic theories. It says if the universe satisfies certain very reasonable assumption, then it will behave in a certain manner. We observe that it doesn’t behave in this manner, therefore the universe doesn’t satisfy those assumption. The only reason that QM come into it is that QM correctly predicts the misbehavior, whereas classical mechanics does not (since classical mechanics satisfies the assumptions).

Now, if you’re comfortable writing down a unitarily evolving density matrix of macroscopic systems, then the mechanism by which QM is able to misbehave is actually fairly transparent.… [continue reading]