
Recent progress in synthetic chemistry and molecular quantum optics has enabled demonstrations of the quantum mechanical wave–particle duality for complex particles, with masses exceeding 10 kDa. Future experiments with even larger objects will require new optical preparation and manipulation methods that shall profit from the possibility to cleave a welldefined molecular tag from a larger parent molecule. Here we present the design and synthesis of two model compounds as well as evidence for the photoinduced beam depletion in high vacuum in one case.
The technique of using “laser grating”, in place of physical grating (slits), for producing spatial interference of molecules relies on the laser’s ability to ionize the molecule. (Once ionized, standing electric fields can sweep it out of the way.) But for some molecules, especially large nanoparticles, this is ineffective. Solution: attach a molecular tag to the nanoparticle that reliably cleaves in the presence of a laser, allowing the nanoparticle to be vacuumed up. Rad.

Asymptotics, singularities and the reduction of theories
Michael BerryThis chapter discusses the asymptotics, singularities, and the reduction of theories. The reduction must involve the study of limits—asymptotics. The reduction is obstructed by the fact that the limit is highly singular. In addition, the type of singularity is important, and the singularities are directly connected to the existence of emergent phenomena and underlie some of the most difficult and intensively studied problems in physics today. The chapter provides six examples of singular limits and emergent phenomena such as special relativity and statistical mechanics. Reduction in its simplest form is well illustrated by special relativity. The connection between the encompassing theory of special relativity and the less general theory of Newtonian mechanics is contained in the “lowspeed” series expansion. The limits of physical theories are not analytic, they are singular; and the emergent phenomena associated with reduction are contained in the singularity. Often, these emergent phenomena inhabit the borderland between theories. Thermodynamics is a continuum theory, so reduction has to show that density fluctuations arising from interatomic forces have a finite range.Berry points out that the limit of quantum mechanics is singular, implying that things like Ehrenfest’s theorem and the canceling of the path integral are not adequate to describe the quantumclassical transition. A similar situation can be found with critical points in statistical mechanics, where the limit similarly becomes illdefined. If you think that the huge intellectual investment in understanding critical points is justified by their fundamental significance (regardless of practical applications), I claim you should think similarly about the quantumclassical limit.
Even in what philosophers might regard as the simplest reductions, between different areas within physics, the detailed workingout of how one theory can contain another has been achieved in only a few cases and involves sophisticated ideas on the forefront of physics and mathematics today….It should be clear from the foregoing that a subtle and sophisticated understanding of the relation between theories within physics requires real mathematics, and not only verbal, conceptual and logical analysis as currently employed by philosophers.
For introductions, see these popular and nontechnical treatments.

A longtime quantum memory capable of storing and measuring quantum information at the singlequbit level is an essential ingredient for practical quantum computation and communication. Recently, there have been remarkable progresses of increasing coherence time for ensemblebased quantum memories of trapped ions, nuclear spins of ionized donors or nuclear spins in a solid. Until now, however, the record of coherence time of a single qubit is on the order of a few tens of seconds demonstrated in trapped ion systems. The qubit coherence time in a trapped ion is mainly limited by the increasing magnetic field fluctuation and the decreasing statedetection efficiency associated with the motional heating of the ion without laser cooling. Here we report the coherence time of a single qubit over 10 minutes in the hyperfine states of a Yb ion sympathetically cooled by a Ba ion in the same Paul trap, which eliminates the heating of the qubit ion even at room temperature. To reach such coherence time, we apply a few thousands of dynamical decoupling pulses to suppress the field fluctuation noise. A longtime quantum memory demonstrated in this experiment makes an important step for construction of the memory zone in scalable quantum computer architectures or for iontrapbased quantum networks. With further improvement of the coherence time by techniques such as magnetic field shielding and increase of the number of qubits in the quantum memory, our demonstration also makes a basis for other applications including quantum money.
I have no intelligent comments about this, and have no idea if the paper is interesting. It’s just a crazy long coherence time.

Multilinear Formulas and Skepticism of Quantum Computing
Scott AaronsonSeveral researchers, including Leonid Levin, Gerard ’t Hooft, and Stephen Wolfram, have argued that quantum mechanics will break down before the factoring of large numbers becomes possible. If this is true, then there should be a natural set of quantum states that can account for all quantum computing experiments performed to date, but not for Shor’s factoring algorithm. We investigate as a candidate the set of states expressible by a polynomial number of additions and tensor products. Using a recent lower bound on multilinear formula size due to Raz, we then show that states arising in quantum errorcorrection require nΩ(log n) additions and tensor products even to approximate, which incidentally yields the first superpolynomial gap between general and multilinear formula size of functions. More broadly, we introduce a complexity classification of pure quantum states, and prove many basic facts about this classification. Our goal is to refine vague ideas about a breakdown of quantum mechanics into specific hypotheses that might be experimentally testable in the near future.(Note that the ACM version is a much shorter “abstract”, missing most of the content.)

Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale
Christopher JarzynskiThe reason we never observe violations of the second law of thermodynamics is in part a matter of statistics: When 10^{23} degrees of freedom are involved, the odds are overwhelmingly stacked against the possibility of seeing significant deviations away from the mean behavior. As we turn our attention to smaller systems, however, statistical fluctuations become more prominent. In recent years it has become apparent that the fluctuations of systems far from thermal equilibrium are not mere background noise, but satisfy strong, useful, and unexpected properties. In particular, a proper accounting of fluctuations allows us to rewrite familiar inequalities of macroscopic thermodynamics as equalities. This review describes some of this progress, and argues that it has refined our understanding of irreversibility and the second law. 
An introduction to YangMills theory
Michael Nielsen
LaTeX in comments
Include [latexpage] to render LaTeX in comments. (More.)Recent Comments
 How to think about Quantum Mechanics—Part 1: Measurements are about bases (6)
 Riedel I'm pretty sure that the eigenvalues of $chi_{[a,b]}(hat A)times 2+chi_{[a,b]}(hat B)$ are not in general... – Jul 28, 10:40 AM
 Riedel Yea, I had to use a raw unicode character for the lessthan signs to keep... – Jul 28, 10:39 AM
 Peter Morgan Apparently my last paragraph "rant"..."/rant" was converted to just ... . Hey ho. – Jul 27, 12:49 PM
 Peter Morgan [latexpage] FWIW, your answers seem OK to me, though I suppose different materials are needed... – Jul 27, 12:44 PM
 Riedel Thanks Peter, these are great questions for refining my position. Yea, I'm very comfortable with... – Jul 27, 10:51 AM
 Peter Morgan [latexpage] I wonder whether you're OK with one particular consequence of allowing normal operators, that... – Jul 27, 9:01 AM
 How to think about Quantum Mechanics—Part 7: Quantum chaos and linear evolution (2)
 Riedel Yea, you can use a KolmogorovSinai (KS) entropy to define classical chaos as follows: Fix... – Jul 24, 3:31 PM
 Yuan Wan Jess, nice write up as usual. Regarding the classical chaos, is it possible to define... – Jul 24, 2:55 PM
 Comments on Cotler, Penington, & Ranard (1)
 Peter Morgan For the QFT case, I note also that insofar as the Hamiltonian, the infinitesimal generator... – Jul 04, 2:41 PM
 Legendre transform (2)
 Kuas Thank you for this! Poor explanations survive because nobody wants to admit they found the... – Jun 28, 6:47 PM
 Francesco Thank you for this post! Making use of slightly more abstract mathematical concepts to truly... – Jun 28, 2:22 PM
 How to think about Quantum Mechanics—Part 1: Measurements are about bases (6)
Licence
foreXiv by C. Jess Riedel is licensed under a Creative Commons AttributionShareAlike 4.0 International License.
Symmetry breaking may be understood mathematically as the noncommutation of the following two limits:
,
where is the external field that breaks the global symmetry, and is the number of degrees of freedom. Bogolyubov pointed out that the correct order is to first take the thermodynamic limit and then the zerofield limit. I wonder if one can make a similar statement about the emergence of classical mechanics. For instance,
,
where is the coupling between the instrument / observer / bath.
Hmm. Is there a good cite for the Bogolyubov observation?
(Btw, if you include “[latexpage]” (without the quotes) in a comment, the latex will be rendered. I’ve edited your comment to add it.)
Thanks for fixing the LaTeX. It’s not easy to dig out the original paper from Bogoliubov (written in Russian and published as internal Dubna report). But the following historical note may be useful:
https://arxiv.org/abs/1003.1363
Bogoliubov pointed out the the naive Gibbs ensemble is problematic when spontaneous symmetry breaking (SSB) is present. The cure, known as “quasiaveraging” in Russian literature, is to add an infinitesimal symmetry breaking field. Berry’s essay makes me wondering how far one can push the analogy between SSB and the emergence of classical mechanics. Could the emergence of classical mechanics be understood as some sort of “symmetry breaking” among all possible quantum basis?