I’m trying out a new type of post: a selection of abstracts I thought were particularly interesting this month (though not necessarily released this month). Some papers I’ll have read in detail, some not. I would be particularly interested in hearing commentary on them.

Experiments testing macroscopic quantum superpositions must be slow
Andrea Mari, Giacomo De Palma, Vittorio GiovannettiWe consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation. 
What is symplectic geometry?
Dusa McDuffIn this talk we explain the elements of symplectic geometry, and sketch the proof of one of its foundational results — Gromov’s nonsqueezing theorem — using Jholomorphic curves.Figure 1.2. The symplectic area is the sum of the area of its projection to the plane given by the velocity and position in the first direction together with the area of the corresponding projection for the two coordinates in the second direction. I have drawn the first 3 coordinates; the fourth is left to your imagination.This papers has some intuition for how to think about symplectic geometry, which surprisingly still isn’t understood in a transparent intuitive way. 
A model with cosmological Bell inequalities
Juan MaldacenaWe discuss the possibility of devising cosmological observables which violate Bell's inequalities. Such observables could be used to argue that cosmic scale features were produced by quantum mechanical effects in the very early universe. As a proof of principle, we propose a somewhat elaborate inflationary model where a Bell inequality violating observable can be constructed. 
Experimental loopholefree violation of a Bell inequality using entangled electron spins separated by 1.3 km
B. Hensen et. alFor more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We employ an eventready scheme that enables the generation of highfidelity entanglement between distant electron spins. Efficient spin readout avoids the fair sampling assumption (detection loophole), while the use of fast random basis selection and readout combined with a spatial separation of 1.3 km ensure the required locality conditions. We perform 245 trials testing the CHSHBell inequality S≤2 and find S=2.42±0.20. A null hypothesis test yields a probability of p=0.039 that a localrealist model for spacelike separated sites produces data with a violation at least as large as observed, even when allowing for memory in the devices. This result rules out large classes of local realist theories, and paves the way for implementing deviceindependent quantumsecure communication and randomness certification.
Your email address will not be published. Required fields are marked with a *.